J. T. Ngnotchouye, M. Herty, S. Steffensen, M. Banda
{"title":"欧拉方程最优控制的松弛方法","authors":"J. T. Ngnotchouye, M. Herty, S. Steffensen, M. Banda","doi":"10.1590/S1807-03022011000200009","DOIUrl":null,"url":null,"abstract":"The treatment of control problems governed by systems of conservation laws poses serious challenges for analysis and numerical simulations. This is due mainly to shock waves that occur in the solution of nonlinear systems of conservation laws. In this article, the problem of the control of Euler flows in gas dynamics is considered. Numerically, two semi-linear approximations of the Euler equations are compared for the purpose of a gradient-based algorithm for optimization. One is the Lattice-Boltzmann method in one spatial dimension and five velocities (D1Q5 model) and the other is the relaxation method. An adjoint method is used. Good results are obtained even in the case where the solution contains discontinuities such as shock waves or contact discontinuities.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Relaxation approaches to the optimal control of the Euler equations\",\"authors\":\"J. T. Ngnotchouye, M. Herty, S. Steffensen, M. Banda\",\"doi\":\"10.1590/S1807-03022011000200009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The treatment of control problems governed by systems of conservation laws poses serious challenges for analysis and numerical simulations. This is due mainly to shock waves that occur in the solution of nonlinear systems of conservation laws. In this article, the problem of the control of Euler flows in gas dynamics is considered. Numerically, two semi-linear approximations of the Euler equations are compared for the purpose of a gradient-based algorithm for optimization. One is the Lattice-Boltzmann method in one spatial dimension and five velocities (D1Q5 model) and the other is the relaxation method. An adjoint method is used. Good results are obtained even in the case where the solution contains discontinuities such as shock waves or contact discontinuities.\",\"PeriodicalId\":50649,\"journal\":{\"name\":\"Computational & Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1590/S1807-03022011000200009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022011000200009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Relaxation approaches to the optimal control of the Euler equations
The treatment of control problems governed by systems of conservation laws poses serious challenges for analysis and numerical simulations. This is due mainly to shock waves that occur in the solution of nonlinear systems of conservation laws. In this article, the problem of the control of Euler flows in gas dynamics is considered. Numerically, two semi-linear approximations of the Euler equations are compared for the purpose of a gradient-based algorithm for optimization. One is the Lattice-Boltzmann method in one spatial dimension and five velocities (D1Q5 model) and the other is the relaxation method. An adjoint method is used. Good results are obtained even in the case where the solution contains discontinuities such as shock waves or contact discontinuities.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.