{"title":"两期肿瘤生长模型的界面动力学","authors":"Inwon C. Kim, Jiajun Tong","doi":"10.4171/ifb/454","DOIUrl":null,"url":null,"abstract":"We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Interface dynamics in a two-phase tumor growth model\",\"authors\":\"Inwon C. Kim, Jiajun Tong\",\"doi\":\"10.4171/ifb/454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Interface dynamics in a two-phase tumor growth model
We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.