一个消息驱动的多gpu并行稀疏三角形求解器

Nan Ding, Yang Liu, Samuel Williams, X. Li
{"title":"一个消息驱动的多gpu并行稀疏三角形求解器","authors":"Nan Ding, Yang Liu, Samuel Williams, X. Li","doi":"10.1137/1.9781611976830.14","DOIUrl":null,"url":null,"abstract":"Sparse triangular solve is used in conjunction with Sparse LU for solving sparse linear systems, either as a direct solver or as a preconditioner. As GPUs have become a firstclass compute citizen, designing an efficient and scalable SpTRSV on multi-GPU HPC systems is imperative. In this paper, we leverage the advantage of GPU-initiated data transfers of NVSHMEM to implement and evaluate a Multi-GPU SpTRSV. We create a novel producer-consumer paradigm to manage the computation and communication in SpTRSV and implement it using two CUDA streams. Our multi-GPU SpTRSV implementation using CUDA streams achieves a 3.7× speedup when using twelve GPUs (two nodes) relative to our implementation on a single GPU, and up to 6.1× compared to cusparse csrsv2() over the range of one to eighteen GPUs. To further explain the observed performance and explore the key features of matrices to estimate the potential performance benefits when using multi-GPU, we extend the critical path model of SpTRSV to GPUs. We demonstrate the ability of our performance model to understand various aspects of performance and performance bottlenecks on multi-GPU and motivate code","PeriodicalId":93610,"journal":{"name":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","volume":"86 1","pages":"147-159"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver\",\"authors\":\"Nan Ding, Yang Liu, Samuel Williams, X. Li\",\"doi\":\"10.1137/1.9781611976830.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse triangular solve is used in conjunction with Sparse LU for solving sparse linear systems, either as a direct solver or as a preconditioner. As GPUs have become a firstclass compute citizen, designing an efficient and scalable SpTRSV on multi-GPU HPC systems is imperative. In this paper, we leverage the advantage of GPU-initiated data transfers of NVSHMEM to implement and evaluate a Multi-GPU SpTRSV. We create a novel producer-consumer paradigm to manage the computation and communication in SpTRSV and implement it using two CUDA streams. Our multi-GPU SpTRSV implementation using CUDA streams achieves a 3.7× speedup when using twelve GPUs (two nodes) relative to our implementation on a single GPU, and up to 6.1× compared to cusparse csrsv2() over the range of one to eighteen GPUs. To further explain the observed performance and explore the key features of matrices to estimate the potential performance benefits when using multi-GPU, we extend the critical path model of SpTRSV to GPUs. We demonstrate the ability of our performance model to understand various aspects of performance and performance bottlenecks on multi-GPU and motivate code\",\"PeriodicalId\":93610,\"journal\":{\"name\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"volume\":\"86 1\",\"pages\":\"147-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611976830.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976830.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

稀疏三角解与稀疏逻辑单元一起用于求解稀疏线性系统,既可以作为直接求解器,也可以作为预条件。随着gpu成为一流的计算公民,在多gpu HPC系统上设计一个高效、可扩展的SpTRSV势在必行。在本文中,我们利用NVSHMEM的gpu启动数据传输的优势来实现和评估一个多gpu SpTRSV。我们创建了一个新的生产者-消费者范式来管理SpTRSV中的计算和通信,并使用两个CUDA流来实现它。我们使用CUDA流的多GPU SpTRSV实现在使用12个GPU(两个节点)时相对于我们在单个GPU上的实现实现了3.7倍的加速,与cusparse csrsv2()相比,在1到18个GPU的范围内达到了6.1倍的加速。为了进一步解释观察到的性能,并探索矩阵的关键特征,以估计使用多gpu时的潜在性能优势,我们将SpTRSV的关键路径模型扩展到gpu。我们演示了我们的性能模型能够理解多gpu上性能和性能瓶颈的各个方面,并激励代码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver
Sparse triangular solve is used in conjunction with Sparse LU for solving sparse linear systems, either as a direct solver or as a preconditioner. As GPUs have become a firstclass compute citizen, designing an efficient and scalable SpTRSV on multi-GPU HPC systems is imperative. In this paper, we leverage the advantage of GPU-initiated data transfers of NVSHMEM to implement and evaluate a Multi-GPU SpTRSV. We create a novel producer-consumer paradigm to manage the computation and communication in SpTRSV and implement it using two CUDA streams. Our multi-GPU SpTRSV implementation using CUDA streams achieves a 3.7× speedup when using twelve GPUs (two nodes) relative to our implementation on a single GPU, and up to 6.1× compared to cusparse csrsv2() over the range of one to eighteen GPUs. To further explain the observed performance and explore the key features of matrices to estimate the potential performance benefits when using multi-GPU, we extend the critical path model of SpTRSV to GPUs. We demonstrate the ability of our performance model to understand various aspects of performance and performance bottlenecks on multi-GPU and motivate code
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信