具有几个湍流点的可解齐次Riemann-Hilbert边值问题

IF 0.5 Q3 MATHEMATICS
A. Fatykhov, P. Shabalin
{"title":"具有几个湍流点的可解齐次Riemann-Hilbert边值问题","authors":"A. Fatykhov, P. Shabalin","doi":"10.15393/J3.ART.2018.5530","DOIUrl":null,"url":null,"abstract":"We consider the so called Hilbert boundary value problem with infinite index in the unit disk. Its coefficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has power discontinuities of orders less than one. We obtain formulas for the general solution and describe completely the solvability picture in a special functional class. Our technique is based on the theory of entire functions and the geometric theory of functions.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Solvability homogeneous Riemann-Hilbert boundary value problem with several points of turbulence\",\"authors\":\"A. Fatykhov, P. Shabalin\",\"doi\":\"10.15393/J3.ART.2018.5530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the so called Hilbert boundary value problem with infinite index in the unit disk. Its coefficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has power discontinuities of orders less than one. We obtain formulas for the general solution and describe completely the solvability picture in a special functional class. Our technique is based on the theory of entire functions and the geometric theory of functions.\",\"PeriodicalId\":41813,\"journal\":{\"name\":\"Problemy Analiza-Issues of Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Analiza-Issues of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15393/J3.ART.2018.5530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2018.5530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

研究了单位圆盘上具有无穷指标的希尔伯特边值问题。在单位圆上除有限组点外,其系数均设为Hölder-continuous。在这些点上,它的辐角具有小于1阶的幂不连续。我们得到了通解的公式,并完整地描述了一类特殊泛函类的可解图。我们的技术是基于全函数理论和函数的几何理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvability homogeneous Riemann-Hilbert boundary value problem with several points of turbulence
We consider the so called Hilbert boundary value problem with infinite index in the unit disk. Its coefficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has power discontinuities of orders less than one. We obtain formulas for the general solution and describe completely the solvability picture in a special functional class. Our technique is based on the theory of entire functions and the geometric theory of functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信