草灰化土壤中玉米(Zea mays) -大豆(Glycine hispida (Moench) Maxim.)的生物CO2循环和有机碳平衡

V. Polovyi, L. Yashchenko, H. Rovna, B. Huk
{"title":"草灰化土壤中玉米(Zea mays) -大豆(Glycine hispida (Moench) Maxim.)的生物CO2循环和有机碳平衡","authors":"V. Polovyi, L. Yashchenko, H. Rovna, B. Huk","doi":"10.31867/2523-4544/0272","DOIUrl":null,"url":null,"abstract":"Topicality. Today, the search for ways to accumulate organic carbon and restore soil fertility, as well as increase crop yield, is a topical issue for the sod-podzolic soils of Western Polissia. Purpose. To determine the intensity of CO2 emission and the organic carbon balance on sod-podzolic soil at different fertilizer rates in the maize-soybean link against the background of chemical amelioration with incorporation of by-products. Methods. We used such methods as a stationary field trial, comparative and calculation method to determine the accumulated and emitted CO2 by plants, analytical and calculation methods to determine the organic carbon balance. Results. The CO2 emissions from organic matter mineralization amounted to 5.01–5.45 t/ha by the recommended fertilizer rate and calculated by the normative method on the background of dolomite and limestone powder, which was 23.4–34.2 % higher than the control (without fertilizers). The CO2 emission into the atmosphere through plant mass mineralization, depending on fertilization and chemical amelioration, was in the range of 18.6–24.7 t/ha and exceeded the control (without fertilizers) and the background of 1.0 Hh (hydrolytic acidity) CaMg(CO3)2 by 1.2–2.0 times, which is associated with improved soil conditions, higher by-products mass and CO2 accumulation by plants. The highest amount of CO2 was accumulated by maize (64.8–65.0 t/ha) and soybean (15.0–15.8 t/ha) at combination of the fertilizer rate calculated by the normative method with microfertilizers on the background of dolomite flour. The application of calculated fertilizer rates on the background of 1.0 Hh CaMg(CO3)2 provided an advantage in the formation of organic carbon in the soil, which formed a positive balance of 0.12 and 0.15 t/ha. In the variant without fertilizers and chemical amelioration, the ratio of total CO2 emissions into the atmosphere per 1 t of grain yield in the maize-soybean link was 4.65 and 4.62 units, while the application of the fertilizer rate calculated by the normative method against the background of 1.0 Hh CaMg(CO3)2 decreased to 3.78 and 3.89 units, respectively. Conclusions. For increasing the maize and soybean productivity on sod-podzolic loamy sandy soil, incorporation of plant mass into the soil with applying the fertiliser rates calculated by the standard method against the background of 1.0 Nh CaMg(CO3)2 is an effective method to control soil degradation that ensures the inclusion of additional organic carbon into the cycle, which is aimed at its fixation by forming a deficit-free balance of 0.12 and 0.15 t/ha. Key words: emission, organic carbon, productivity, fertilization, land amelioration, plant mass","PeriodicalId":23071,"journal":{"name":"The Scientific Journal Grain Crops","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological CO2 cycle and organic carbon balance in maize (Zea mays) – soybean (Glycine hispida (Moench) Maxim.) agrocenosis in sod-podzolic soil\",\"authors\":\"V. Polovyi, L. Yashchenko, H. Rovna, B. Huk\",\"doi\":\"10.31867/2523-4544/0272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topicality. Today, the search for ways to accumulate organic carbon and restore soil fertility, as well as increase crop yield, is a topical issue for the sod-podzolic soils of Western Polissia. Purpose. To determine the intensity of CO2 emission and the organic carbon balance on sod-podzolic soil at different fertilizer rates in the maize-soybean link against the background of chemical amelioration with incorporation of by-products. Methods. We used such methods as a stationary field trial, comparative and calculation method to determine the accumulated and emitted CO2 by plants, analytical and calculation methods to determine the organic carbon balance. Results. The CO2 emissions from organic matter mineralization amounted to 5.01–5.45 t/ha by the recommended fertilizer rate and calculated by the normative method on the background of dolomite and limestone powder, which was 23.4–34.2 % higher than the control (without fertilizers). The CO2 emission into the atmosphere through plant mass mineralization, depending on fertilization and chemical amelioration, was in the range of 18.6–24.7 t/ha and exceeded the control (without fertilizers) and the background of 1.0 Hh (hydrolytic acidity) CaMg(CO3)2 by 1.2–2.0 times, which is associated with improved soil conditions, higher by-products mass and CO2 accumulation by plants. The highest amount of CO2 was accumulated by maize (64.8–65.0 t/ha) and soybean (15.0–15.8 t/ha) at combination of the fertilizer rate calculated by the normative method with microfertilizers on the background of dolomite flour. The application of calculated fertilizer rates on the background of 1.0 Hh CaMg(CO3)2 provided an advantage in the formation of organic carbon in the soil, which formed a positive balance of 0.12 and 0.15 t/ha. In the variant without fertilizers and chemical amelioration, the ratio of total CO2 emissions into the atmosphere per 1 t of grain yield in the maize-soybean link was 4.65 and 4.62 units, while the application of the fertilizer rate calculated by the normative method against the background of 1.0 Hh CaMg(CO3)2 decreased to 3.78 and 3.89 units, respectively. Conclusions. For increasing the maize and soybean productivity on sod-podzolic loamy sandy soil, incorporation of plant mass into the soil with applying the fertiliser rates calculated by the standard method against the background of 1.0 Nh CaMg(CO3)2 is an effective method to control soil degradation that ensures the inclusion of additional organic carbon into the cycle, which is aimed at its fixation by forming a deficit-free balance of 0.12 and 0.15 t/ha. Key words: emission, organic carbon, productivity, fertilization, land amelioration, plant mass\",\"PeriodicalId\":23071,\"journal\":{\"name\":\"The Scientific Journal Grain Crops\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Scientific Journal Grain Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31867/2523-4544/0272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific Journal Grain Crops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31867/2523-4544/0272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时事性。今天,寻找积累有机碳、恢复土壤肥力以及增加作物产量的方法,是西波兰的草灰化土壤的一个热门问题。目的。测定玉米-大豆环节不同施肥量玉米-大豆化学改良副产物掺入背景下的草甸-灰化土CO2排放强度及有机碳平衡。方法。我们采用静态田间试验法、比较法和计算法测定植物积累和排放的CO2、分析法和计算法测定有机碳平衡。结果。以白云石和灰岩粉为背景,按推荐施肥量和规范方法计算,有机质矿化CO2排放量为5.01 ~ 5.45 t/ha,比对照(不施肥)高出23.4 ~ 34.2%。在施肥和化学改良条件下,通过植物体矿化向大气排放的CO2在18.6 ~ 24.7 t/ha范围内,超过对照(不施肥)和1.0 Hh(水解酸度)CaMg(CO3)2背景的1.2 ~ 2.0倍,这与土壤条件改善、副产物质量增加和植物积累CO2有关。在以白云石粉为背景施用微量肥的情况下,玉米(64.8 ~ 65.0 t/ha)和大豆(15.0 ~ 15.8 t/ha)的CO2积累量最高。在1.0 Hh CaMg(CO3)2背景下计算施肥量有利于土壤有机碳的形成,形成0.12和0.15 t/ha的正平衡。在未施用化肥和化学改良的品种中,玉米-大豆环节每吨粮食产量向大气排放的CO2总量之比分别为4.65和4.62个单位,而在1.0 Hh CaMg(CO3)2背景下,按规范方法计算的施肥量分别为3.78和3.89个单位。结论。为了提高玉米和大豆在灰化土壤土上的生产力,在1.0 Nh CaMg(CO3)2的背景下,通过标准方法计算的施肥量将植物体纳入土壤是控制土壤退化的有效方法,确保将额外的有机碳纳入循环,其目的是通过形成0.12和0.15 t/ha的无亏平衡来固定有机碳。关键词:排放,有机碳,生产力,施肥,土地改良,植物质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological CO2 cycle and organic carbon balance in maize (Zea mays) – soybean (Glycine hispida (Moench) Maxim.) agrocenosis in sod-podzolic soil
Topicality. Today, the search for ways to accumulate organic carbon and restore soil fertility, as well as increase crop yield, is a topical issue for the sod-podzolic soils of Western Polissia. Purpose. To determine the intensity of CO2 emission and the organic carbon balance on sod-podzolic soil at different fertilizer rates in the maize-soybean link against the background of chemical amelioration with incorporation of by-products. Methods. We used such methods as a stationary field trial, comparative and calculation method to determine the accumulated and emitted CO2 by plants, analytical and calculation methods to determine the organic carbon balance. Results. The CO2 emissions from organic matter mineralization amounted to 5.01–5.45 t/ha by the recommended fertilizer rate and calculated by the normative method on the background of dolomite and limestone powder, which was 23.4–34.2 % higher than the control (without fertilizers). The CO2 emission into the atmosphere through plant mass mineralization, depending on fertilization and chemical amelioration, was in the range of 18.6–24.7 t/ha and exceeded the control (without fertilizers) and the background of 1.0 Hh (hydrolytic acidity) CaMg(CO3)2 by 1.2–2.0 times, which is associated with improved soil conditions, higher by-products mass and CO2 accumulation by plants. The highest amount of CO2 was accumulated by maize (64.8–65.0 t/ha) and soybean (15.0–15.8 t/ha) at combination of the fertilizer rate calculated by the normative method with microfertilizers on the background of dolomite flour. The application of calculated fertilizer rates on the background of 1.0 Hh CaMg(CO3)2 provided an advantage in the formation of organic carbon in the soil, which formed a positive balance of 0.12 and 0.15 t/ha. In the variant without fertilizers and chemical amelioration, the ratio of total CO2 emissions into the atmosphere per 1 t of grain yield in the maize-soybean link was 4.65 and 4.62 units, while the application of the fertilizer rate calculated by the normative method against the background of 1.0 Hh CaMg(CO3)2 decreased to 3.78 and 3.89 units, respectively. Conclusions. For increasing the maize and soybean productivity on sod-podzolic loamy sandy soil, incorporation of plant mass into the soil with applying the fertiliser rates calculated by the standard method against the background of 1.0 Nh CaMg(CO3)2 is an effective method to control soil degradation that ensures the inclusion of additional organic carbon into the cycle, which is aimed at its fixation by forming a deficit-free balance of 0.12 and 0.15 t/ha. Key words: emission, organic carbon, productivity, fertilization, land amelioration, plant mass
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信