近似字符串搜索与快速傅里叶变换和简单

Daniel Liu
{"title":"近似字符串搜索与快速傅里叶变换和简单","authors":"Daniel Liu","doi":"10.7287/peerj.preprints.27615v1","DOIUrl":null,"url":null,"abstract":"Previous algorithms for solving the approximate string matching with Hamming distance problem with wildcard (\"don't care\") characters have been shown to take \\(O(|\\Sigma| N \\log M)\\) time, where \\(N\\) is the length of the text, \\(M\\) is the length of the pattern, and \\(|\\Sigma|\\) is the size of the alphabet. They make use of the Fast Fourier Transform for efficiently calculating convolutions. We describe a novel approach of the problem, which makes use of special encoding schemes that depend on \\((|\\Sigma| - 1)\\)-simplexes in \\((|\\Sigma| - 1)\\)-dimensional space.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"9 1","pages":"e27615"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate string searching with fast fourier transforms and simplexes\",\"authors\":\"Daniel Liu\",\"doi\":\"10.7287/peerj.preprints.27615v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous algorithms for solving the approximate string matching with Hamming distance problem with wildcard (\\\"don't care\\\") characters have been shown to take \\\\(O(|\\\\Sigma| N \\\\log M)\\\\) time, where \\\\(N\\\\) is the length of the text, \\\\(M\\\\) is the length of the pattern, and \\\\(|\\\\Sigma|\\\\) is the size of the alphabet. They make use of the Fast Fourier Transform for efficiently calculating convolutions. We describe a novel approach of the problem, which makes use of special encoding schemes that depend on \\\\((|\\\\Sigma| - 1)\\\\)-simplexes in \\\\((|\\\\Sigma| - 1)\\\\)-dimensional space.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"9 1\",\"pages\":\"e27615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/peerj.preprints.27615v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27615v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

先前用于解决带有通配符(“不关心”)字符的近似字符串匹配与汉明距离问题的算法已被证明需要\(O(|\Sigma| N \log M)\)时间,其中\(N\)是文本的长度,\(M\)是模式的长度,\(|\Sigma|\)是字母表的大小。他们利用快速傅里叶变换来有效地计算卷积。我们描述了一种解决该问题的新方法,该方法利用了在\((|\Sigma| - 1)\)维空间中依赖于\((|\Sigma| - 1)\) -simplexes的特殊编码方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate string searching with fast fourier transforms and simplexes
Previous algorithms for solving the approximate string matching with Hamming distance problem with wildcard ("don't care") characters have been shown to take \(O(|\Sigma| N \log M)\) time, where \(N\) is the length of the text, \(M\) is the length of the pattern, and \(|\Sigma|\) is the size of the alphabet. They make use of the Fast Fourier Transform for efficiently calculating convolutions. We describe a novel approach of the problem, which makes use of special encoding schemes that depend on \((|\Sigma| - 1)\)-simplexes in \((|\Sigma| - 1)\)-dimensional space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信