Janmenjoy Nayak, N. Sahoo, J. R. Swain, T. Dash, H. Behera
{"title":"基于遗传算法的多项式神经网络数据分类","authors":"Janmenjoy Nayak, N. Sahoo, J. R. Swain, T. Dash, H. Behera","doi":"10.1109/ICIT.2014.55","DOIUrl":null,"url":null,"abstract":"Polynomial Neural Network is a self-organizing network whose performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, a training algorithm for Polynomial Neural Network (PNN) based on Genetic Algorithm (GA) has been proposed for classification problems. A performance comparison of the proposed PNN-GA and Back Propagation based PNN (PNN-BP) has also been carried out by considering four popular datasets obtained from UCI machine learning repository. Experimental results show that the proposed PNN-GA outperforms PNN-BP for all the four datasets and thus may be applied as classification model in many real world problems.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"11 1","pages":"234-239"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GA Based Polynomial Neural Network for Data Classification\",\"authors\":\"Janmenjoy Nayak, N. Sahoo, J. R. Swain, T. Dash, H. Behera\",\"doi\":\"10.1109/ICIT.2014.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polynomial Neural Network is a self-organizing network whose performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, a training algorithm for Polynomial Neural Network (PNN) based on Genetic Algorithm (GA) has been proposed for classification problems. A performance comparison of the proposed PNN-GA and Back Propagation based PNN (PNN-BP) has also been carried out by considering four popular datasets obtained from UCI machine learning repository. Experimental results show that the proposed PNN-GA outperforms PNN-BP for all the four datasets and thus may be applied as classification model in many real world problems.\",\"PeriodicalId\":6486,\"journal\":{\"name\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"11 1\",\"pages\":\"234-239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GA Based Polynomial Neural Network for Data Classification
Polynomial Neural Network is a self-organizing network whose performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, a training algorithm for Polynomial Neural Network (PNN) based on Genetic Algorithm (GA) has been proposed for classification problems. A performance comparison of the proposed PNN-GA and Back Propagation based PNN (PNN-BP) has also been carried out by considering four popular datasets obtained from UCI machine learning repository. Experimental results show that the proposed PNN-GA outperforms PNN-BP for all the four datasets and thus may be applied as classification model in many real world problems.