反德西特3-流形的轨道计数和离散谱的定量研究

Pub Date : 2021-12-10 DOI:10.3792/pjaa.97.018
K. Kannaka
{"title":"反德西特3-流形的轨道计数和离散谱的定量研究","authors":"K. Kannaka","doi":"10.3792/pjaa.97.018","DOIUrl":null,"url":null,"abstract":": Let (cid:2) be a discontinuous group for the 3-dimensional anti-de Sitter space AdS 3 : ¼ SO 0 ð 2 ; 2 Þ = SO 0 ð 2 ; 1 Þ . In this article, we discuss a growth rate of the counting of (cid:2) -orbits at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter manifold (cid:2) n AdS 3 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quantitative study of orbit counting and discrete spectrum for anti-de Sitter 3-manifolds\",\"authors\":\"K. Kannaka\",\"doi\":\"10.3792/pjaa.97.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Let (cid:2) be a discontinuous group for the 3-dimensional anti-de Sitter space AdS 3 : ¼ SO 0 ð 2 ; 2 Þ = SO 0 ð 2 ; 1 Þ . In this article, we discuss a growth rate of the counting of (cid:2) -orbits at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter manifold (cid:2) n AdS 3 .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.97.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.97.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

:设(cid:2)为三维反de Sitter空间ad3:¼so0 ð 2的不连续群;2 Þ = so 0 ð 2;1 Þ。本文讨论了无限远处(cid:2)轨道计数的增长速率和完全反德西特流形(cid:2)的双曲拉普拉斯离散谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A quantitative study of orbit counting and discrete spectrum for anti-de Sitter 3-manifolds
: Let (cid:2) be a discontinuous group for the 3-dimensional anti-de Sitter space AdS 3 : ¼ SO 0 ð 2 ; 2 Þ = SO 0 ð 2 ; 1 Þ . In this article, we discuss a growth rate of the counting of (cid:2) -orbits at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter manifold (cid:2) n AdS 3 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信