{"title":"反德西特3-流形的轨道计数和离散谱的定量研究","authors":"K. Kannaka","doi":"10.3792/pjaa.97.018","DOIUrl":null,"url":null,"abstract":": Let (cid:2) be a discontinuous group for the 3-dimensional anti-de Sitter space AdS 3 : ¼ SO 0 ð 2 ; 2 Þ = SO 0 ð 2 ; 1 Þ . In this article, we discuss a growth rate of the counting of (cid:2) -orbits at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter manifold (cid:2) n AdS 3 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quantitative study of orbit counting and discrete spectrum for anti-de Sitter 3-manifolds\",\"authors\":\"K. Kannaka\",\"doi\":\"10.3792/pjaa.97.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Let (cid:2) be a discontinuous group for the 3-dimensional anti-de Sitter space AdS 3 : ¼ SO 0 ð 2 ; 2 Þ = SO 0 ð 2 ; 1 Þ . In this article, we discuss a growth rate of the counting of (cid:2) -orbits at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter manifold (cid:2) n AdS 3 .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.97.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.97.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quantitative study of orbit counting and discrete spectrum for anti-de Sitter 3-manifolds
: Let (cid:2) be a discontinuous group for the 3-dimensional anti-de Sitter space AdS 3 : ¼ SO 0 ð 2 ; 2 Þ = SO 0 ð 2 ; 1 Þ . In this article, we discuss a growth rate of the counting of (cid:2) -orbits at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter manifold (cid:2) n AdS 3 .