基于回声时频表示的卷积神经网络目标分类

Mariia Dmitrieva, Matias Valdenegro-Toro, K. Brown, G. Heald, D. Lane
{"title":"基于回声时频表示的卷积神经网络目标分类","authors":"Mariia Dmitrieva, Matias Valdenegro-Toro, K. Brown, G. Heald, D. Lane","doi":"10.1109/MLSP.2017.8168134","DOIUrl":null,"url":null,"abstract":"This paper presents classification of spherical objects with different physical properties. The classification is based on the energy distribution in wideband pulses that have been scattered from objects. The echo is represented in Time-Frequency Domain (TFD), using Short Time Fourier Transform (STFT) with different window lengths, and is fed into a Convolution Neural Network (CNN) for classification. The results for different window lengths are analysed to study the influence of time and frequency resolution in classification. The CNN performs the best results with accuracy of (98.44 ± 0.8)% over 5 object classes trained on grayscale TFD images with 0.1 ms window length of STFT. The CNN is compared with a Multilayer Perceptron classifier, Support Vector Machine, and Gradient Boosting.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Object classification with convolution neural network based on the time-frequency representation of their echo\",\"authors\":\"Mariia Dmitrieva, Matias Valdenegro-Toro, K. Brown, G. Heald, D. Lane\",\"doi\":\"10.1109/MLSP.2017.8168134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents classification of spherical objects with different physical properties. The classification is based on the energy distribution in wideband pulses that have been scattered from objects. The echo is represented in Time-Frequency Domain (TFD), using Short Time Fourier Transform (STFT) with different window lengths, and is fed into a Convolution Neural Network (CNN) for classification. The results for different window lengths are analysed to study the influence of time and frequency resolution in classification. The CNN performs the best results with accuracy of (98.44 ± 0.8)% over 5 object classes trained on grayscale TFD images with 0.1 ms window length of STFT. The CNN is compared with a Multilayer Perceptron classifier, Support Vector Machine, and Gradient Boosting.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"2 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文介绍了具有不同物理性质的球形物体的分类。这种分类是基于从物体散射出来的宽带脉冲的能量分布。利用不同窗长的短时傅立叶变换(STFT)在时频域(TFD)中表示回波,并将其送入卷积神经网络(CNN)进行分类。分析了不同窗长的结果,研究了时频分辨率对分类的影响。在STFT窗口长度为0.1 ms的灰度TFD图像上,CNN在5个目标类别上训练的准确率达到(98.44±0.8)%。CNN与多层感知器分类器、支持向量机和梯度增强进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object classification with convolution neural network based on the time-frequency representation of their echo
This paper presents classification of spherical objects with different physical properties. The classification is based on the energy distribution in wideband pulses that have been scattered from objects. The echo is represented in Time-Frequency Domain (TFD), using Short Time Fourier Transform (STFT) with different window lengths, and is fed into a Convolution Neural Network (CNN) for classification. The results for different window lengths are analysed to study the influence of time and frequency resolution in classification. The CNN performs the best results with accuracy of (98.44 ± 0.8)% over 5 object classes trained on grayscale TFD images with 0.1 ms window length of STFT. The CNN is compared with a Multilayer Perceptron classifier, Support Vector Machine, and Gradient Boosting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信