{"title":"随机介质中燃烧的定量均匀化","authors":"Y. Zhang, Andrej Zlatoš","doi":"10.4171/aihpc/80","DOIUrl":null,"url":null,"abstract":"We obtain the first quantitative stochastic homogenization result for reaction-diffusion equations, for ignition reactions in dimensions $d\\le 3$ that either have finite ranges of dependence or are close enough to such reactions, and for solutions with initial data that approximate characteristic functions of general convex sets. We show algebraic rate of convergence of these solutions to their homogenized limits, which are (discontinuous) viscosity solutions of certain related Hamilton-Jacobi equations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantitative homogenization for combustion in random media\",\"authors\":\"Y. Zhang, Andrej Zlatoš\",\"doi\":\"10.4171/aihpc/80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the first quantitative stochastic homogenization result for reaction-diffusion equations, for ignition reactions in dimensions $d\\\\le 3$ that either have finite ranges of dependence or are close enough to such reactions, and for solutions with initial data that approximate characteristic functions of general convex sets. We show algebraic rate of convergence of these solutions to their homogenized limits, which are (discontinuous) viscosity solutions of certain related Hamilton-Jacobi equations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/80\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/80","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantitative homogenization for combustion in random media
We obtain the first quantitative stochastic homogenization result for reaction-diffusion equations, for ignition reactions in dimensions $d\le 3$ that either have finite ranges of dependence or are close enough to such reactions, and for solutions with initial data that approximate characteristic functions of general convex sets. We show algebraic rate of convergence of these solutions to their homogenized limits, which are (discontinuous) viscosity solutions of certain related Hamilton-Jacobi equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.