使用结构模式分析系统级故障的案例

Harry H. Chen
{"title":"使用结构模式分析系统级故障的案例","authors":"Harry H. Chen","doi":"10.1109/TEST.2014.7035346","DOIUrl":null,"url":null,"abstract":"In the hyper-competitive consumer mobile product space where aggressive schedules, mass volume, and short life-cycles are the norm, system-level testing (SLT) plays a key role in achieving time-to-market (TTM) goals. But SLT also impedes time-to-volume (TTV) and cuts into profit margins. This talk will describe our recent experimental research to establish links between post-silicon SLT failures and production structural patterns. Operating on-chip-clocked scan patterns under non-destructive stress conditions to force incorrect responses from all devices, we apply machine learning to discern SLT failure signatures in noisy scan output data. One goal of the work is to significantly reduce SLT effort and cost, thus achieving early TTV and increased profitability. Other possibilities include diagnosis to identify systematically vulnerable regions of the design for selective test targeting with more through patterns.","PeriodicalId":6403,"journal":{"name":"2007 IEEE International Test Conference","volume":"216 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The case for analyzing system level failures using structural patterns\",\"authors\":\"Harry H. Chen\",\"doi\":\"10.1109/TEST.2014.7035346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the hyper-competitive consumer mobile product space where aggressive schedules, mass volume, and short life-cycles are the norm, system-level testing (SLT) plays a key role in achieving time-to-market (TTM) goals. But SLT also impedes time-to-volume (TTV) and cuts into profit margins. This talk will describe our recent experimental research to establish links between post-silicon SLT failures and production structural patterns. Operating on-chip-clocked scan patterns under non-destructive stress conditions to force incorrect responses from all devices, we apply machine learning to discern SLT failure signatures in noisy scan output data. One goal of the work is to significantly reduce SLT effort and cost, thus achieving early TTV and increased profitability. Other possibilities include diagnosis to identify systematically vulnerable regions of the design for selective test targeting with more through patterns.\",\"PeriodicalId\":6403,\"journal\":{\"name\":\"2007 IEEE International Test Conference\",\"volume\":\"216 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2014.7035346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2014.7035346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在竞争激烈的消费者移动产品领域,积极的计划、大量的产量和较短的生命周期是常态,系统级测试(SLT)在实现上市时间(TTM)目标方面发挥着关键作用。但SLT也阻碍了TTV,并削减了利润率。这次演讲将描述我们最近的实验研究,以建立硅后SLT失效和生产结构模式之间的联系。在非破坏性应力条件下操作片上时钟扫描模式以迫使所有设备做出错误响应,我们应用机器学习来识别噪声扫描输出数据中的SLT故障特征。工作的一个目标是显著减少SLT工作和成本,从而实现早期TTV和增加盈利能力。其他可能性包括诊断,以确定系统的脆弱区域的设计选择性测试目标与更多的通过模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The case for analyzing system level failures using structural patterns
In the hyper-competitive consumer mobile product space where aggressive schedules, mass volume, and short life-cycles are the norm, system-level testing (SLT) plays a key role in achieving time-to-market (TTM) goals. But SLT also impedes time-to-volume (TTV) and cuts into profit margins. This talk will describe our recent experimental research to establish links between post-silicon SLT failures and production structural patterns. Operating on-chip-clocked scan patterns under non-destructive stress conditions to force incorrect responses from all devices, we apply machine learning to discern SLT failure signatures in noisy scan output data. One goal of the work is to significantly reduce SLT effort and cost, thus achieving early TTV and increased profitability. Other possibilities include diagnosis to identify systematically vulnerable regions of the design for selective test targeting with more through patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信