Hurwitz函数在临界线上的力矩

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Sahay
{"title":"Hurwitz函数在临界线上的力矩","authors":"A. Sahay","doi":"10.1017/S0305004122000457","DOIUrl":null,"url":null,"abstract":"Abstract We study the moments \n$M_k(T;\\,\\alpha) = \\int_T^{2T} |\\zeta(s,\\alpha)|^{2k}\\,dt$\n of the Hurwitz zeta function \n$\\zeta(s,\\alpha)$\n on the critical line, \n$s = 1/2 + it$\n with a rational shift \n$\\alpha \\in \\mathbb{Q}$\n . We conjecture, in analogy with the Riemann zeta function, that \n$M_k(T;\\,\\alpha) \\sim c_k(\\alpha) T (\\!\\log T)^{k^2}$\n . Using heuristics from analytic number theory and random matrix theory, we conjecturally compute \n$c_k(\\alpha)$\n . In the process, we investigate moments of products of Dirichlet L-functions on the critical line. We prove some of our conjectures for the cases \n$k = 1,2$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"1 1","pages":"631 - 661"},"PeriodicalIF":0.6000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moments of the Hurwitz zeta function on the critical line\",\"authors\":\"A. Sahay\",\"doi\":\"10.1017/S0305004122000457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the moments \\n$M_k(T;\\\\,\\\\alpha) = \\\\int_T^{2T} |\\\\zeta(s,\\\\alpha)|^{2k}\\\\,dt$\\n of the Hurwitz zeta function \\n$\\\\zeta(s,\\\\alpha)$\\n on the critical line, \\n$s = 1/2 + it$\\n with a rational shift \\n$\\\\alpha \\\\in \\\\mathbb{Q}$\\n . We conjecture, in analogy with the Riemann zeta function, that \\n$M_k(T;\\\\,\\\\alpha) \\\\sim c_k(\\\\alpha) T (\\\\!\\\\log T)^{k^2}$\\n . Using heuristics from analytic number theory and random matrix theory, we conjecturally compute \\n$c_k(\\\\alpha)$\\n . In the process, we investigate moments of products of Dirichlet L-functions on the critical line. We prove some of our conjectures for the cases \\n$k = 1,2$\\n .\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"1 1\",\"pages\":\"631 - 661\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004122000457\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000457","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了Hurwitz zeta函数$\zeta(s,\alpha)$在临界线上的矩$M_k(T;\,\alpha) = \int_T^{2T} |\zeta(s,\alpha)|^{2k}\,dt$, $s = 1/2 + it$有一个合理的位移$\alpha \in \mathbb{Q}$。我们推测,与黎曼函数类似,$M_k(T;\,\alpha) \sim c_k(\alpha) T (\!\log T)^{k^2}$。利用解析数论和随机矩阵理论的启发式方法,我们推测计算$c_k(\alpha)$。在此过程中,我们研究了狄利克雷l函数在临界线上积的矩。我们对这些案例证明了我们的一些猜想$k = 1,2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments of the Hurwitz zeta function on the critical line
Abstract We study the moments $M_k(T;\,\alpha) = \int_T^{2T} |\zeta(s,\alpha)|^{2k}\,dt$ of the Hurwitz zeta function $\zeta(s,\alpha)$ on the critical line, $s = 1/2 + it$ with a rational shift $\alpha \in \mathbb{Q}$ . We conjecture, in analogy with the Riemann zeta function, that $M_k(T;\,\alpha) \sim c_k(\alpha) T (\!\log T)^{k^2}$ . Using heuristics from analytic number theory and random matrix theory, we conjecturally compute $c_k(\alpha)$ . In the process, we investigate moments of products of Dirichlet L-functions on the critical line. We prove some of our conjectures for the cases $k = 1,2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信