L. Chehami, Jingfei Liu, P. Pomarède, P. Lohmuller, Boris Pittrowski, F. Meraghni, N. Declercq
{"title":"压缩应变对三维周期双材料结构影响的超声研究","authors":"L. Chehami, Jingfei Liu, P. Pomarède, P. Lohmuller, Boris Pittrowski, F. Meraghni, N. Declercq","doi":"10.1051/aacus/2022023","DOIUrl":null,"url":null,"abstract":"Due to the specific elastic properties such as high stiffness to mass ratio, regular microstructure materials are widely used in the industry. The need for nondestructive evaluation is ubiquitous to ensure material quality. As an effective nondestructive testing method, ultrasound has great potential in providing an efficient materials characterization. However, contrary to more convenient ultrasound applications, challenges arise when applying ultrasound to 3D bi-material structures due to the coexistence of different phenomena, including diffraction effects caused by the periodicity. Two linear ultrasound methods, namely the Bragg diffraction and the comb filtering effect, are proposed to address this hurdle. The results show that the comb filtering effect effectively characterizes, respectively, the vertical structural quality of the bi-material. Bragg diffraction can also expose structural variations in the horizontal plane.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"1118 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic investigation of the effect of compressive strains on 3D periodic bi-material structures\",\"authors\":\"L. Chehami, Jingfei Liu, P. Pomarède, P. Lohmuller, Boris Pittrowski, F. Meraghni, N. Declercq\",\"doi\":\"10.1051/aacus/2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the specific elastic properties such as high stiffness to mass ratio, regular microstructure materials are widely used in the industry. The need for nondestructive evaluation is ubiquitous to ensure material quality. As an effective nondestructive testing method, ultrasound has great potential in providing an efficient materials characterization. However, contrary to more convenient ultrasound applications, challenges arise when applying ultrasound to 3D bi-material structures due to the coexistence of different phenomena, including diffraction effects caused by the periodicity. Two linear ultrasound methods, namely the Bragg diffraction and the comb filtering effect, are proposed to address this hurdle. The results show that the comb filtering effect effectively characterizes, respectively, the vertical structural quality of the bi-material. Bragg diffraction can also expose structural variations in the horizontal plane.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"1118 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022023\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022023","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Ultrasonic investigation of the effect of compressive strains on 3D periodic bi-material structures
Due to the specific elastic properties such as high stiffness to mass ratio, regular microstructure materials are widely used in the industry. The need for nondestructive evaluation is ubiquitous to ensure material quality. As an effective nondestructive testing method, ultrasound has great potential in providing an efficient materials characterization. However, contrary to more convenient ultrasound applications, challenges arise when applying ultrasound to 3D bi-material structures due to the coexistence of different phenomena, including diffraction effects caused by the periodicity. Two linear ultrasound methods, namely the Bragg diffraction and the comb filtering effect, are proposed to address this hurdle. The results show that the comb filtering effect effectively characterizes, respectively, the vertical structural quality of the bi-material. Bragg diffraction can also expose structural variations in the horizontal plane.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.