参数Nb -度量空间中唯一不动点与非唯一不动点及其应用

Pub Date : 2022-12-01 DOI:10.2478/ausm-2022-0019
Sudheer Petwal, A. Tomar, M. Joshi
{"title":"参数Nb -度量空间中唯一不动点与非唯一不动点及其应用","authors":"Sudheer Petwal, A. Tomar, M. Joshi","doi":"10.2478/ausm-2022-0019","DOIUrl":null,"url":null,"abstract":"Abstract We propose 𝒮𝒜, η−𝒮𝒜, η−𝒮 𝒜min, and 𝒮𝒜η,δ,ζ−contractions and notions of η−admissibility type b and ηb−regularity in parametric Nb-metric spaces to determine a unique fixed point, a unique fixed circle, and a greatest fixed disc. Further, we investigate the geometry of non-unique fixed points of a self mapping and demonstrate by illustrative examples that a circle or a disc in parametric Nb−metric space is not necessarily the same as a circle or a disc in a Euclidean space. Obtained outcomes are extensions, unifications, improvements, and generalizations of some of the well-known previous results. We provide non-trivial illustrations to exhibit the importance of our explorations. Towards the end, we resolve the system of linear equations to demonstrate the significance of our contractions in parametric Nb−metric space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On unique and non-unique fixed point in parametric Nb−metric spaces with application\",\"authors\":\"Sudheer Petwal, A. Tomar, M. Joshi\",\"doi\":\"10.2478/ausm-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose 𝒮𝒜, η−𝒮𝒜, η−𝒮 𝒜min, and 𝒮𝒜η,δ,ζ−contractions and notions of η−admissibility type b and ηb−regularity in parametric Nb-metric spaces to determine a unique fixed point, a unique fixed circle, and a greatest fixed disc. Further, we investigate the geometry of non-unique fixed points of a self mapping and demonstrate by illustrative examples that a circle or a disc in parametric Nb−metric space is not necessarily the same as a circle or a disc in a Euclidean space. Obtained outcomes are extensions, unifications, improvements, and generalizations of some of the well-known previous results. We provide non-trivial illustrations to exhibit the importance of our explorations. Towards the end, we resolve the system of linear equations to demonstrate the significance of our contractions in parametric Nb−metric space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要在参数nb -度量空间中,我们提出𝒮,η -𝒮,η -𝒮𝒜min,𝒮𝒜η,δ,ζ -缩和η -可容许型b和η -正则性的概念,以确定唯一不动点,唯一不动圆和最大不动盘。进一步,我们研究了自映射的非唯一不动点的几何性质,并通过举例证明了参数Nb−度量空间中的圆或盘不一定与欧几里德空间中的圆或盘相同。所获得的结果是一些众所周知的先前结果的扩展、统一、改进和推广。我们提供了不平凡的插图来展示我们探索的重要性。最后,我们解出了线性方程组,以证明我们在参数Nb−度量空间中的收缩的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On unique and non-unique fixed point in parametric Nb−metric spaces with application
Abstract We propose 𝒮𝒜, η−𝒮𝒜, η−𝒮 𝒜min, and 𝒮𝒜η,δ,ζ−contractions and notions of η−admissibility type b and ηb−regularity in parametric Nb-metric spaces to determine a unique fixed point, a unique fixed circle, and a greatest fixed disc. Further, we investigate the geometry of non-unique fixed points of a self mapping and demonstrate by illustrative examples that a circle or a disc in parametric Nb−metric space is not necessarily the same as a circle or a disc in a Euclidean space. Obtained outcomes are extensions, unifications, improvements, and generalizations of some of the well-known previous results. We provide non-trivial illustrations to exhibit the importance of our explorations. Towards the end, we resolve the system of linear equations to demonstrate the significance of our contractions in parametric Nb−metric space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信