{"title":"sobolev型Volterra-Fredholm积分-微分方程解存在性的结果","authors":"Yogita m. Ahire, N. M. Mohammed, Ahmed A. Hamoud","doi":"10.37622/ijde/16.1.2021.47-57","DOIUrl":null,"url":null,"abstract":"In this study, the semigroup theory and the Schauder fixed point theorem are applied to prove the existence and uniqueness of mild and strong solutions of a nonlinear Volterra-Fredholm integro-differential equation of Sobolev type with nonlocal condition.","PeriodicalId":36454,"journal":{"name":"International Journal of Difference Equations","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results on the Existence of Solutions of Sobolev-Type Volterra-Fredholm Integro-Differential Equations\",\"authors\":\"Yogita m. Ahire, N. M. Mohammed, Ahmed A. Hamoud\",\"doi\":\"10.37622/ijde/16.1.2021.47-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the semigroup theory and the Schauder fixed point theorem are applied to prove the existence and uniqueness of mild and strong solutions of a nonlinear Volterra-Fredholm integro-differential equation of Sobolev type with nonlocal condition.\",\"PeriodicalId\":36454,\"journal\":{\"name\":\"International Journal of Difference Equations\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Difference Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/ijde/16.1.2021.47-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Difference Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/ijde/16.1.2021.47-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Results on the Existence of Solutions of Sobolev-Type Volterra-Fredholm Integro-Differential Equations
In this study, the semigroup theory and the Schauder fixed point theorem are applied to prove the existence and uniqueness of mild and strong solutions of a nonlinear Volterra-Fredholm integro-differential equation of Sobolev type with nonlocal condition.