基于传感器云的资源完整性感知灵活资源扩展方法

Q3 Engineering
B. Sadhana, R. Tata, P. K. Chandrika, M. Mekala, N. Srinivasu, G. Varma
{"title":"基于传感器云的资源完整性感知灵活资源扩展方法","authors":"B. Sadhana, R. Tata, P. K. Chandrika, M. Mekala, N. Srinivasu, G. Varma","doi":"10.1504/ijpt.2021.10040728","DOIUrl":null,"url":null,"abstract":"Massive internet of things (IoT) framework deployments increase edge devices usage and dependently increase the generation of data. The traditional elastic asset scheduling approach is phenomenally suitable to a single cloud environment. The prognosticative asset demand is not sufficient. The existing methods are neglecting billing mechanisms to scale up and down the asset scheduling actions. Consequently, we propose an adaptive workload prediction algorithm to schedule the resource and asset migration algorithm to accomplish low leased costs. The predictive model ensures assets scheduling at cluster-edge to reduce the latency. The migration algorithm regulates data reliability with moderate workload balancing. The simulation results exhibit an adaptive system performance such as leased cost curb, essential data integrity, and workload balancing.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource integrity-aware flexible resource scaling approach over sensor-cloud\",\"authors\":\"B. Sadhana, R. Tata, P. K. Chandrika, M. Mekala, N. Srinivasu, G. Varma\",\"doi\":\"10.1504/ijpt.2021.10040728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive internet of things (IoT) framework deployments increase edge devices usage and dependently increase the generation of data. The traditional elastic asset scheduling approach is phenomenally suitable to a single cloud environment. The prognosticative asset demand is not sufficient. The existing methods are neglecting billing mechanisms to scale up and down the asset scheduling actions. Consequently, we propose an adaptive workload prediction algorithm to schedule the resource and asset migration algorithm to accomplish low leased costs. The predictive model ensures assets scheduling at cluster-edge to reduce the latency. The migration algorithm regulates data reliability with moderate workload balancing. The simulation results exhibit an adaptive system performance such as leased cost curb, essential data integrity, and workload balancing.\",\"PeriodicalId\":37550,\"journal\":{\"name\":\"International Journal of Powertrains\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Powertrains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijpt.2021.10040728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpt.2021.10040728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

大规模物联网(IoT)框架部署增加了边缘设备的使用,并相应地增加了数据的生成。传统的弹性资产调度方法非常适合单一的云环境。可预测的资产需求并不充分。现有的方法忽略了计费机制,以扩大和缩小资产调度操作。因此,我们提出一种自适应工作负荷预测算法来调度资源和资产迁移算法,以实现低租赁成本。该预测模型保证了集群边缘的资产调度,减少了延迟。迁移算法在保证数据可靠性的同时,实现适度的负载均衡。仿真结果显示了自适应系统性能,如租赁成本控制、基本数据完整性和工作负载平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource integrity-aware flexible resource scaling approach over sensor-cloud
Massive internet of things (IoT) framework deployments increase edge devices usage and dependently increase the generation of data. The traditional elastic asset scheduling approach is phenomenally suitable to a single cloud environment. The prognosticative asset demand is not sufficient. The existing methods are neglecting billing mechanisms to scale up and down the asset scheduling actions. Consequently, we propose an adaptive workload prediction algorithm to schedule the resource and asset migration algorithm to accomplish low leased costs. The predictive model ensures assets scheduling at cluster-edge to reduce the latency. The migration algorithm regulates data reliability with moderate workload balancing. The simulation results exhibit an adaptive system performance such as leased cost curb, essential data integrity, and workload balancing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信