基于层次特征的表面缺陷检测

L. Xiao, Tao Huang, Bo Wu, Youmin Hu, Jiehan Zhou
{"title":"基于层次特征的表面缺陷检测","authors":"L. Xiao, Tao Huang, Bo Wu, Youmin Hu, Jiehan Zhou","doi":"10.1109/COASE.2019.8843235","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an instance level hierarchical features based convolution neural network model (H-CNN) for detecting surface defects. The H-CNN uses different convolutional layers’ extracted features to generate defect masks. The H-CNN first generates proposal regions. Then, it proposes a fully convolutional neural network to extract different level’s convolutional features and detect instance level defects. We applied the H-CNN model in freight train detection system for detecting oil-leaks, and the results demonstrate that the H-CNN can effectively identify and generate defect masks. It achieves 92% accuracy on the large reflective oil-leak stain, 86% on the large non-reflective oil-leak stain, 89% on the small reflective oil-leak stain and 74% on the small non-reflective oil-leak stain. Its image process speed is 0.467 s per frame.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"31 2 1","pages":"1592-1596"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Surface Defect Detection using Hierarchical Features\",\"authors\":\"L. Xiao, Tao Huang, Bo Wu, Youmin Hu, Jiehan Zhou\",\"doi\":\"10.1109/COASE.2019.8843235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an instance level hierarchical features based convolution neural network model (H-CNN) for detecting surface defects. The H-CNN uses different convolutional layers’ extracted features to generate defect masks. The H-CNN first generates proposal regions. Then, it proposes a fully convolutional neural network to extract different level’s convolutional features and detect instance level defects. We applied the H-CNN model in freight train detection system for detecting oil-leaks, and the results demonstrate that the H-CNN can effectively identify and generate defect masks. It achieves 92% accuracy on the large reflective oil-leak stain, 86% on the large non-reflective oil-leak stain, 89% on the small reflective oil-leak stain and 74% on the small non-reflective oil-leak stain. Its image process speed is 0.467 s per frame.\",\"PeriodicalId\":6695,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"31 2 1\",\"pages\":\"1592-1596\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2019.8843235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于实例级分层特征的卷积神经网络模型(H-CNN)用于表面缺陷检测。H-CNN使用不同卷积层提取的特征来生成缺陷蒙版。H-CNN首先生成提议区域。然后,提出了一种全卷积神经网络来提取不同层次的卷积特征并检测实例级缺陷。将H-CNN模型应用于货运列车漏油检测系统中,结果表明H-CNN能有效识别并生成缺陷掩模。对大反射性漏油污渍的检测准确率为92%,对大非反射性漏油污渍的检测准确率为86%,对小反射性漏油污渍的检测准确率为89%,对小非反射性漏油污渍的检测准确率为74%。其图像处理速度为每帧0.467 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Defect Detection using Hierarchical Features
In this paper, we propose an instance level hierarchical features based convolution neural network model (H-CNN) for detecting surface defects. The H-CNN uses different convolutional layers’ extracted features to generate defect masks. The H-CNN first generates proposal regions. Then, it proposes a fully convolutional neural network to extract different level’s convolutional features and detect instance level defects. We applied the H-CNN model in freight train detection system for detecting oil-leaks, and the results demonstrate that the H-CNN can effectively identify and generate defect masks. It achieves 92% accuracy on the large reflective oil-leak stain, 86% on the large non-reflective oil-leak stain, 89% on the small reflective oil-leak stain and 74% on the small non-reflective oil-leak stain. Its image process speed is 0.467 s per frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信