Sriram Subramanian, S. Sundararaman, Nisha Talagala, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
{"title":"使用ioSnap的flash快照","authors":"Sriram Subramanian, S. Sundararaman, Nisha Talagala, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau","doi":"10.1145/2592798.2592825","DOIUrl":null,"url":null,"abstract":"Snapshots are a common and heavily relied upon feature in storage systems. The high performance of flash-based storage systems brings new, more stringent, requirements for this classic capability. We present ioSnap, a flash optimized snapshot system. Through careful design exploiting common snapshot usage patterns and flash oriented optimizations, including leveraging native characteristics of Flash Translation Layers, ioSnap delivers low-overhead snapshots with minimal disruption to foreground traffic. Through our evaluation, we show that ioSnap incurs negligible performance overhead during normal operation, and that common-case operations such as snapshot creation and deletion incur little cost. We also demonstrate techniques to mitigate the performance impact on foreground I/O during intensive snapshot operations such as activation. Overall, ioSnap represents a case study of how to integrate snapshots into a modern, well-engineered flash-based storage system.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"82 1","pages":"23:1-23:14"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Snapshots in a flash with ioSnap\",\"authors\":\"Sriram Subramanian, S. Sundararaman, Nisha Talagala, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau\",\"doi\":\"10.1145/2592798.2592825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snapshots are a common and heavily relied upon feature in storage systems. The high performance of flash-based storage systems brings new, more stringent, requirements for this classic capability. We present ioSnap, a flash optimized snapshot system. Through careful design exploiting common snapshot usage patterns and flash oriented optimizations, including leveraging native characteristics of Flash Translation Layers, ioSnap delivers low-overhead snapshots with minimal disruption to foreground traffic. Through our evaluation, we show that ioSnap incurs negligible performance overhead during normal operation, and that common-case operations such as snapshot creation and deletion incur little cost. We also demonstrate techniques to mitigate the performance impact on foreground I/O during intensive snapshot operations such as activation. Overall, ioSnap represents a case study of how to integrate snapshots into a modern, well-engineered flash-based storage system.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"82 1\",\"pages\":\"23:1-23:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2592798.2592825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2592798.2592825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Snapshots are a common and heavily relied upon feature in storage systems. The high performance of flash-based storage systems brings new, more stringent, requirements for this classic capability. We present ioSnap, a flash optimized snapshot system. Through careful design exploiting common snapshot usage patterns and flash oriented optimizations, including leveraging native characteristics of Flash Translation Layers, ioSnap delivers low-overhead snapshots with minimal disruption to foreground traffic. Through our evaluation, we show that ioSnap incurs negligible performance overhead during normal operation, and that common-case operations such as snapshot creation and deletion incur little cost. We also demonstrate techniques to mitigate the performance impact on foreground I/O during intensive snapshot operations such as activation. Overall, ioSnap represents a case study of how to integrate snapshots into a modern, well-engineered flash-based storage system.