{"title":"自动生成用于可视化的语义图标编码","authors":"V. Setlur, J. Mackinlay","doi":"10.1145/2556288.2557408","DOIUrl":null,"url":null,"abstract":"Authors use icon encodings to indicate the semantics of categorical information in visualizations. The default icon libraries found in visualization tools often do not match the semantics of the data. Users often manually search for or create icons that are more semantically meaningful. This process can hinder the flow of visual analysis, especially when the amount of data is large, leading to a suboptimal user experience. We propose a technique for automatically generating semantically relevant icon encodings for categorical dimensions of data points. The algorithm employs natural language processing in order to find relevant imagery from the Internet. We evaluate our approach on Mechanical Turk by generating large libraries of icons using Tableau Public workbooks that represent real analytical effort by people out in the world. Our results show that the automatic algorithm does nearly as well as the manually created icons, and particularly has higher user satisfaction for larger cardinalities of data.","PeriodicalId":20599,"journal":{"name":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","volume":"241 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Automatic generation of semantic icon encodings for visualizations\",\"authors\":\"V. Setlur, J. Mackinlay\",\"doi\":\"10.1145/2556288.2557408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authors use icon encodings to indicate the semantics of categorical information in visualizations. The default icon libraries found in visualization tools often do not match the semantics of the data. Users often manually search for or create icons that are more semantically meaningful. This process can hinder the flow of visual analysis, especially when the amount of data is large, leading to a suboptimal user experience. We propose a technique for automatically generating semantically relevant icon encodings for categorical dimensions of data points. The algorithm employs natural language processing in order to find relevant imagery from the Internet. We evaluate our approach on Mechanical Turk by generating large libraries of icons using Tableau Public workbooks that represent real analytical effort by people out in the world. Our results show that the automatic algorithm does nearly as well as the manually created icons, and particularly has higher user satisfaction for larger cardinalities of data.\",\"PeriodicalId\":20599,\"journal\":{\"name\":\"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems\",\"volume\":\"241 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2556288.2557408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556288.2557408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic generation of semantic icon encodings for visualizations
Authors use icon encodings to indicate the semantics of categorical information in visualizations. The default icon libraries found in visualization tools often do not match the semantics of the data. Users often manually search for or create icons that are more semantically meaningful. This process can hinder the flow of visual analysis, especially when the amount of data is large, leading to a suboptimal user experience. We propose a technique for automatically generating semantically relevant icon encodings for categorical dimensions of data points. The algorithm employs natural language processing in order to find relevant imagery from the Internet. We evaluate our approach on Mechanical Turk by generating large libraries of icons using Tableau Public workbooks that represent real analytical effort by people out in the world. Our results show that the automatic algorithm does nearly as well as the manually created icons, and particularly has higher user satisfaction for larger cardinalities of data.