Nguyen-Hung Le, Victor Pinedo, Juvenal Lopez, Felipe Cava, M. Feldman
{"title":"双功能细胞壁靶T6SS效应物对革兰氏阴性和革兰氏阳性细菌的杀伤作用","authors":"Nguyen-Hung Le, Victor Pinedo, Juvenal Lopez, Felipe Cava, M. Feldman","doi":"10.1101/2021.03.04.433973","DOIUrl":null,"url":null,"abstract":"Significance Previous studies have indicated that Gram-positive bacteria are not affected by type VI secretion serum (T6SS) intoxication. However, here we show that Acinetobacter baumannii employs its T6SS to kill different Gram-positive bacteria. Furthermore, we determined that killing was dependent on Tse4, a bifunctional effector possessing lytic transglycosylase and endopeptidase activities. Tse4 represents a broad family of modularly organized T6SS peptidoglycan-degrading effectors. In addition, we show that secretion of D-lysine by A. baumannii results in a pH increase, which greatly enhances Tse4 activity. These results expand the range of T6SS-mediated interbacterial interactions that may shape the composition of bacterial communities in the context of the human microbiota and polymicrobial infections. The type VI secretion system (T6SS) is a powerful tool deployed by Gram-negative bacteria to antagonize neighboring organisms. Here, we report that Acinetobacter baumannii ATCC 17978 (Ab17978) secretes D-lysine (D-Lys), increasing the extracellular pH and enhancing the peptidoglycanase activity of the T6SS effector Tse4. This synergistic effect of D-Lys on Tse4 activity enables Ab17978 to outcompete Gram-negative bacterial competitors, demonstrating that bacteria can modify their microenvironment to increase their fitness during bacterial warfare. Remarkably, this lethal combination also results in T6SS-mediated killing of Gram-positive bacteria. Further characterization revealed that Tse4 is a bifunctional enzyme consisting of both lytic transglycosylase and endopeptidase activities, thus representing a family of modularly organized T6SS peptidoglycan-degrading effectors with an unprecedented impact in antagonistic bacterial interactions.","PeriodicalId":20595,"journal":{"name":"Proceedings of the National Academy of Sciences","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector\",\"authors\":\"Nguyen-Hung Le, Victor Pinedo, Juvenal Lopez, Felipe Cava, M. Feldman\",\"doi\":\"10.1101/2021.03.04.433973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significance Previous studies have indicated that Gram-positive bacteria are not affected by type VI secretion serum (T6SS) intoxication. However, here we show that Acinetobacter baumannii employs its T6SS to kill different Gram-positive bacteria. Furthermore, we determined that killing was dependent on Tse4, a bifunctional effector possessing lytic transglycosylase and endopeptidase activities. Tse4 represents a broad family of modularly organized T6SS peptidoglycan-degrading effectors. In addition, we show that secretion of D-lysine by A. baumannii results in a pH increase, which greatly enhances Tse4 activity. These results expand the range of T6SS-mediated interbacterial interactions that may shape the composition of bacterial communities in the context of the human microbiota and polymicrobial infections. The type VI secretion system (T6SS) is a powerful tool deployed by Gram-negative bacteria to antagonize neighboring organisms. Here, we report that Acinetobacter baumannii ATCC 17978 (Ab17978) secretes D-lysine (D-Lys), increasing the extracellular pH and enhancing the peptidoglycanase activity of the T6SS effector Tse4. This synergistic effect of D-Lys on Tse4 activity enables Ab17978 to outcompete Gram-negative bacterial competitors, demonstrating that bacteria can modify their microenvironment to increase their fitness during bacterial warfare. Remarkably, this lethal combination also results in T6SS-mediated killing of Gram-positive bacteria. Further characterization revealed that Tse4 is a bifunctional enzyme consisting of both lytic transglycosylase and endopeptidase activities, thus representing a family of modularly organized T6SS peptidoglycan-degrading effectors with an unprecedented impact in antagonistic bacterial interactions.\",\"PeriodicalId\":20595,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.03.04.433973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.03.04.433973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector
Significance Previous studies have indicated that Gram-positive bacteria are not affected by type VI secretion serum (T6SS) intoxication. However, here we show that Acinetobacter baumannii employs its T6SS to kill different Gram-positive bacteria. Furthermore, we determined that killing was dependent on Tse4, a bifunctional effector possessing lytic transglycosylase and endopeptidase activities. Tse4 represents a broad family of modularly organized T6SS peptidoglycan-degrading effectors. In addition, we show that secretion of D-lysine by A. baumannii results in a pH increase, which greatly enhances Tse4 activity. These results expand the range of T6SS-mediated interbacterial interactions that may shape the composition of bacterial communities in the context of the human microbiota and polymicrobial infections. The type VI secretion system (T6SS) is a powerful tool deployed by Gram-negative bacteria to antagonize neighboring organisms. Here, we report that Acinetobacter baumannii ATCC 17978 (Ab17978) secretes D-lysine (D-Lys), increasing the extracellular pH and enhancing the peptidoglycanase activity of the T6SS effector Tse4. This synergistic effect of D-Lys on Tse4 activity enables Ab17978 to outcompete Gram-negative bacterial competitors, demonstrating that bacteria can modify their microenvironment to increase their fitness during bacterial warfare. Remarkably, this lethal combination also results in T6SS-mediated killing of Gram-positive bacteria. Further characterization revealed that Tse4 is a bifunctional enzyme consisting of both lytic transglycosylase and endopeptidase activities, thus representing a family of modularly organized T6SS peptidoglycan-degrading effectors with an unprecedented impact in antagonistic bacterial interactions.