暗池存在下的市场决策和激励设计:斯塔克尔伯格行为-批评方法

Oper. Res. Pub Date : 2022-12-07 DOI:10.1287/opre.2022.2406
Bastien Baldacci, Iuliia Manziuk, Thibaut Mastrolia, M. Rosenbaum
{"title":"暗池存在下的市场决策和激励设计:斯塔克尔伯格行为-批评方法","authors":"Bastien Baldacci, Iuliia Manziuk, Thibaut Mastrolia, M. Rosenbaum","doi":"10.1287/opre.2022.2406","DOIUrl":null,"url":null,"abstract":"A Stackelberg actor–critic approach to optimal market making and incentives design with dark pools. We consider the issue of a market maker acting at the same time in the lit and dark pools of an exchange. The exchange wishes to establish a suitable make–take fee policy to attract transactions on its venues. We first solve the stochastic control problem of the market maker without the intervention of the exchange. Then, we derive the equations defining the optimal contract to be set between the market maker and the exchange. This contract depends on the trading flows generated by the market maker’s activity on the two venues. In both cases, we show existence and uniqueness, in the viscosity sense, of the solutions of the Hamilton–Jacobi–Bellman equations associated to the market maker and exchange’s problems. We finally design an actor–critic algorithm inspired by deep reinforcement learning methods, enabling us to approximate efficiently the optimal controls of the market maker and the optimal incentives to be provided by the exchange.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"269 1","pages":"727-749"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Market Making and Incentives Design in the Presence of a Dark Pool: A Stackelberg Actor-Critic Approach\",\"authors\":\"Bastien Baldacci, Iuliia Manziuk, Thibaut Mastrolia, M. Rosenbaum\",\"doi\":\"10.1287/opre.2022.2406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Stackelberg actor–critic approach to optimal market making and incentives design with dark pools. We consider the issue of a market maker acting at the same time in the lit and dark pools of an exchange. The exchange wishes to establish a suitable make–take fee policy to attract transactions on its venues. We first solve the stochastic control problem of the market maker without the intervention of the exchange. Then, we derive the equations defining the optimal contract to be set between the market maker and the exchange. This contract depends on the trading flows generated by the market maker’s activity on the two venues. In both cases, we show existence and uniqueness, in the viscosity sense, of the solutions of the Hamilton–Jacobi–Bellman equations associated to the market maker and exchange’s problems. We finally design an actor–critic algorithm inspired by deep reinforcement learning methods, enabling us to approximate efficiently the optimal controls of the market maker and the optimal incentives to be provided by the exchange.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"269 1\",\"pages\":\"727-749\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2022.2406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最优市场决策和暗池激励设计的Stackelberg行为批判方法。我们考虑一个做市商同时在交易所的亮池和暗池中行动的问题。交易所希望建立适当的手续费政策,以吸引其交易场所的交易。首先在没有交易所干预的情况下,解决了做市商的随机控制问题。然后,我们导出了定义做市商和交易所之间最优合约的方程。该合约取决于做市商在这两个场所的活动所产生的交易流量。在这两种情况下,我们证明了与做市商和交易所问题相关的Hamilton-Jacobi-Bellman方程的解在粘度意义上的存在性和唯一性。最后,我们设计了一个受深度强化学习方法启发的行为者批评算法,使我们能够有效地近似做市商的最优控制和交易所提供的最优激励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Market Making and Incentives Design in the Presence of a Dark Pool: A Stackelberg Actor-Critic Approach
A Stackelberg actor–critic approach to optimal market making and incentives design with dark pools. We consider the issue of a market maker acting at the same time in the lit and dark pools of an exchange. The exchange wishes to establish a suitable make–take fee policy to attract transactions on its venues. We first solve the stochastic control problem of the market maker without the intervention of the exchange. Then, we derive the equations defining the optimal contract to be set between the market maker and the exchange. This contract depends on the trading flows generated by the market maker’s activity on the two venues. In both cases, we show existence and uniqueness, in the viscosity sense, of the solutions of the Hamilton–Jacobi–Bellman equations associated to the market maker and exchange’s problems. We finally design an actor–critic algorithm inspired by deep reinforcement learning methods, enabling us to approximate efficiently the optimal controls of the market maker and the optimal incentives to be provided by the exchange.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信