一种基于非混合的热高光谱图像分析方法

M. Cubero-Castan, J. Chanussot, X. Briottet, M. Shimoni, V. Achard
{"title":"一种基于非混合的热高光谱图像分析方法","authors":"M. Cubero-Castan, J. Chanussot, X. Briottet, M. Shimoni, V. Achard","doi":"10.1109/ICASSP.2014.6855120","DOIUrl":null,"url":null,"abstract":"The estimation of surface emissivity and temperature from thermal hyperspectral data is a challenge. Methods that estimate the temperature and emissivity on a pixel composed by one single material exist. However, the estimation of the temperature on a mixed pixel, i.e. a pixel composed by more than one material, is more complex and has scarcely been investigated in the literature. This paper addresses this issue by proposing an estimator which linearizes the Black Body law around the mean temperature of each material. The performance of this estimator is studied using simulated data with different hyperspectral sensor configurations and under various noise conditions. The obtained results are encouraging and show an accuracy on the estimated temperature of 0.5 K while using high spectral resolution sensor.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"20 1","pages":"7809-7813"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An unmixing-based method for the analysis of thermal hyperspectral images\",\"authors\":\"M. Cubero-Castan, J. Chanussot, X. Briottet, M. Shimoni, V. Achard\",\"doi\":\"10.1109/ICASSP.2014.6855120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of surface emissivity and temperature from thermal hyperspectral data is a challenge. Methods that estimate the temperature and emissivity on a pixel composed by one single material exist. However, the estimation of the temperature on a mixed pixel, i.e. a pixel composed by more than one material, is more complex and has scarcely been investigated in the literature. This paper addresses this issue by proposing an estimator which linearizes the Black Body law around the mean temperature of each material. The performance of this estimator is studied using simulated data with different hyperspectral sensor configurations and under various noise conditions. The obtained results are encouraging and show an accuracy on the estimated temperature of 0.5 K while using high spectral resolution sensor.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"20 1\",\"pages\":\"7809-7813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6855120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6855120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用热高光谱数据估算地表发射率和温度是一个挑战。在由单一材料组成的像素上估计温度和发射率的方法是存在的。然而,混合像元(即由多种材料组成的像元)上的温度估计更为复杂,文献中很少研究。本文通过提出一个估计器来解决这个问题,该估计器将黑体定律围绕每种材料的平均温度线性化。利用不同高光谱传感器配置和不同噪声条件下的模拟数据,研究了该估计器的性能。所得结果令人鼓舞,表明在使用高光谱分辨率传感器时,估计温度的精度为0.5 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unmixing-based method for the analysis of thermal hyperspectral images
The estimation of surface emissivity and temperature from thermal hyperspectral data is a challenge. Methods that estimate the temperature and emissivity on a pixel composed by one single material exist. However, the estimation of the temperature on a mixed pixel, i.e. a pixel composed by more than one material, is more complex and has scarcely been investigated in the literature. This paper addresses this issue by proposing an estimator which linearizes the Black Body law around the mean temperature of each material. The performance of this estimator is studied using simulated data with different hyperspectral sensor configurations and under various noise conditions. The obtained results are encouraging and show an accuracy on the estimated temperature of 0.5 K while using high spectral resolution sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信