{"title":"学习误差上界为留一的核函数","authors":"Yong Liu, Shizhong Liao, Yuexian Hou","doi":"10.1145/2063576.2063927","DOIUrl":null,"url":null,"abstract":"We propose a new leaning method for Multiple Kernel Learning (MKL) based on the upper bounds of the leave-one-out error that is an almost unbiased estimate of the expected generalization error. Specifically, we first present two new formulations for MKL by minimizing the upper bounds of the leave-one-out error. Then, we compute the derivatives of these bounds and design an efficient iterative algorithm for solving these formulations. Experimental results show that the proposed method gives better accuracy results than that of both SVM with the uniform combination of basis kernels and other state-of-art kernel learning approaches.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"149 1","pages":"2205-2208"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learning kernels with upper bounds of leave-one-out error\",\"authors\":\"Yong Liu, Shizhong Liao, Yuexian Hou\",\"doi\":\"10.1145/2063576.2063927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new leaning method for Multiple Kernel Learning (MKL) based on the upper bounds of the leave-one-out error that is an almost unbiased estimate of the expected generalization error. Specifically, we first present two new formulations for MKL by minimizing the upper bounds of the leave-one-out error. Then, we compute the derivatives of these bounds and design an efficient iterative algorithm for solving these formulations. Experimental results show that the proposed method gives better accuracy results than that of both SVM with the uniform combination of basis kernels and other state-of-art kernel learning approaches.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"149 1\",\"pages\":\"2205-2208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning kernels with upper bounds of leave-one-out error
We propose a new leaning method for Multiple Kernel Learning (MKL) based on the upper bounds of the leave-one-out error that is an almost unbiased estimate of the expected generalization error. Specifically, we first present two new formulations for MKL by minimizing the upper bounds of the leave-one-out error. Then, we compute the derivatives of these bounds and design an efficient iterative algorithm for solving these formulations. Experimental results show that the proposed method gives better accuracy results than that of both SVM with the uniform combination of basis kernels and other state-of-art kernel learning approaches.