{"title":"铜和草酸盐在大气水体中铁的氧化还原循环中的作用","authors":"David L. Sedlak, Jürg Hoigné","doi":"10.1016/0960-1686(93)90047-3","DOIUrl":null,"url":null,"abstract":"<div><p>During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO<sub>2</sub>) and superoxide (O<sub>2</sub><sup>−</sup>) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>, and cycled between the Cu(II) and Cu(I) forms. Cu<sup>+</sup> reacted with FeOH<sup>2+</sup> to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10<sup>7</sup> M<sup>−1</sup>s<sup>−1</sup>. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>. Only at high oxalate concentrations was the Fe(II)C<sub>2</sub>O<sub>4</sub> complex also formed, and it reacted relatively rapidly with hydrogen peroxide (<em>k</em> = (3.1 ± 0.6) × 10<sup>4</sup> M<sup>−1</sup>s<sup>−1</sup>). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH<sup>2+</sup> with Cu(I) and HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO<sub>2</sub> present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>.</p></div>","PeriodicalId":100139,"journal":{"name":"Atmospheric Environment. Part A. General Topics","volume":"27 14","pages":"Pages 2173-2185"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0960-1686(93)90047-3","citationCount":"183","resultStr":"{\"title\":\"The role of copper and oxalate in the redox cycling of iron in atmospheric waters\",\"authors\":\"David L. Sedlak, Jürg Hoigné\",\"doi\":\"10.1016/0960-1686(93)90047-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO<sub>2</sub>) and superoxide (O<sub>2</sub><sup>−</sup>) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>, and cycled between the Cu(II) and Cu(I) forms. Cu<sup>+</sup> reacted with FeOH<sup>2+</sup> to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10<sup>7</sup> M<sup>−1</sup>s<sup>−1</sup>. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>. Only at high oxalate concentrations was the Fe(II)C<sub>2</sub>O<sub>4</sub> complex also formed, and it reacted relatively rapidly with hydrogen peroxide (<em>k</em> = (3.1 ± 0.6) × 10<sup>4</sup> M<sup>−1</sup>s<sup>−1</sup>). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH<sup>2+</sup> with Cu(I) and HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO<sub>2</sub> present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO<sub>2</sub>/O<sub>2</sub><sup>−</sup>.</p></div>\",\"PeriodicalId\":100139,\"journal\":{\"name\":\"Atmospheric Environment. Part A. General Topics\",\"volume\":\"27 14\",\"pages\":\"Pages 2173-2185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0960-1686(93)90047-3\",\"citationCount\":\"183\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment. Part A. General Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0960168693900473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment. Part A. General Topics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0960168693900473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of copper and oxalate in the redox cycling of iron in atmospheric waters
During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO2) and superoxide (O2−) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO2/O2−. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO2/O2−, and cycled between the Cu(II) and Cu(I) forms. Cu+ reacted with FeOH2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 107 M−1s−1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO2/O2−. Only at high oxalate concentrations was the Fe(II)C2O4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide (k = (3.1 ± 0.6) × 104 M−1s−1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH2+ with Cu(I) and HO2/O2−, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO2/O2−, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO2/O2−.