POS序列在推特情感分析中句型分析的应用

Fajri Koto, M. Adriani
{"title":"POS序列在推特情感分析中句型分析的应用","authors":"Fajri Koto, M. Adriani","doi":"10.1109/WAINA.2015.58","DOIUrl":null,"url":null,"abstract":"As one of the largest Social Media in providing public data every day, Twitter has attracted the attention of researcher to investigate, in order to mine public opinion, which is known as Sentiment Analysis. Consequently, many techniques and studies related to Sentiment Analysis over Twitter have been proposed in recent years. However, there is no study that discuss about sentence pattern of positive/negative sentence and neither subjective/objective sentence. In this paper we propose POS sequence as feature to investigate pattern or word combination of tweets in two domains of Sentiment Analysis: subjectivity and polarity. Specifically we utilize Information Gain to extract POS sequence in three forms: sequence of 2-tags, 3-tags, and 5-tags. The results reveal that there are some tendencies of sentence pattern which distinguish between positive, negative, subjective and objective tweets. Our approach also shows that feature of POS sequence can improve Sentiment Analysis accuracy.","PeriodicalId":6845,"journal":{"name":"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops","volume":"274 1","pages":"547-551"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The Use of POS Sequence for Analyzing Sentence Pattern in Twitter Sentiment Analysis\",\"authors\":\"Fajri Koto, M. Adriani\",\"doi\":\"10.1109/WAINA.2015.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the largest Social Media in providing public data every day, Twitter has attracted the attention of researcher to investigate, in order to mine public opinion, which is known as Sentiment Analysis. Consequently, many techniques and studies related to Sentiment Analysis over Twitter have been proposed in recent years. However, there is no study that discuss about sentence pattern of positive/negative sentence and neither subjective/objective sentence. In this paper we propose POS sequence as feature to investigate pattern or word combination of tweets in two domains of Sentiment Analysis: subjectivity and polarity. Specifically we utilize Information Gain to extract POS sequence in three forms: sequence of 2-tags, 3-tags, and 5-tags. The results reveal that there are some tendencies of sentence pattern which distinguish between positive, negative, subjective and objective tweets. Our approach also shows that feature of POS sequence can improve Sentiment Analysis accuracy.\",\"PeriodicalId\":6845,\"journal\":{\"name\":\"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"274 1\",\"pages\":\"547-551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2015.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2015.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

作为每天提供公共数据的最大的社交媒体之一,Twitter吸引了研究人员的注意来调查,以挖掘民意,这被称为情绪分析。因此,近年来提出了许多与Twitter情感分析相关的技术和研究。但是,目前还没有对肯定句和否定句、主观句和客观句的句式进行研究。本文提出词序作为特征,在情感分析的主观性和极性两个领域研究推文的模式或词组合。具体来说,我们利用信息增益提取了三种形式的POS序列:2-标签序列、3-标签序列和5-标签序列。结果表明,微博在句式上存在一定的区分积极、消极、主观和客观微博的倾向。我们的方法还表明,词序特征可以提高情感分析的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of POS Sequence for Analyzing Sentence Pattern in Twitter Sentiment Analysis
As one of the largest Social Media in providing public data every day, Twitter has attracted the attention of researcher to investigate, in order to mine public opinion, which is known as Sentiment Analysis. Consequently, many techniques and studies related to Sentiment Analysis over Twitter have been proposed in recent years. However, there is no study that discuss about sentence pattern of positive/negative sentence and neither subjective/objective sentence. In this paper we propose POS sequence as feature to investigate pattern or word combination of tweets in two domains of Sentiment Analysis: subjectivity and polarity. Specifically we utilize Information Gain to extract POS sequence in three forms: sequence of 2-tags, 3-tags, and 5-tags. The results reveal that there are some tendencies of sentence pattern which distinguish between positive, negative, subjective and objective tweets. Our approach also shows that feature of POS sequence can improve Sentiment Analysis accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信