量子广义欧拉热方程

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY
Salha Alshaikey , Narjess T. Khalifa , Hakeem A. Othman , Hafedh Rguigui
{"title":"量子广义欧拉热方程","authors":"Salha Alshaikey ,&nbsp;Narjess T. Khalifa ,&nbsp;Hakeem A. Othman ,&nbsp;Hafedh Rguigui","doi":"10.1016/j.spjpm.2017.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>Based on nuclear algebra of operators acting on spaces of entire functions with <em>θ</em>-exponential growth of minimal type, we introduce the quantum generalized Fourier–Gauss transform, the quantum second quantization as well as the quantum generalized Euler operator of which the quantum differential second quantization and the quantum generalized Gross Laplacian are particular examples. Important relation between the quantum generalized Fourier–Gauss transform, the quantum second quantization and the quantum convolution operator is given. Then, using this relation and under some conditions, we investigate the solution of a initial-value problem associated to the quantum generalized Euler operator. More precisely, we show that the aforementioned solution is the composition of a quantum second quantization and a quantum convolution operator.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.10.006","citationCount":"1","resultStr":"{\"title\":\"Quantum generalized Euler heat equation\",\"authors\":\"Salha Alshaikey ,&nbsp;Narjess T. Khalifa ,&nbsp;Hakeem A. Othman ,&nbsp;Hafedh Rguigui\",\"doi\":\"10.1016/j.spjpm.2017.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on nuclear algebra of operators acting on spaces of entire functions with <em>θ</em>-exponential growth of minimal type, we introduce the quantum generalized Fourier–Gauss transform, the quantum second quantization as well as the quantum generalized Euler operator of which the quantum differential second quantization and the quantum generalized Gross Laplacian are particular examples. Important relation between the quantum generalized Fourier–Gauss transform, the quantum second quantization and the quantum convolution operator is given. Then, using this relation and under some conditions, we investigate the solution of a initial-value problem associated to the quantum generalized Euler operator. More precisely, we show that the aforementioned solution is the composition of a quantum second quantization and a quantum convolution operator.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.10.006\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240572231630024X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240572231630024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

基于作用于极小型θ-指数增长的整个函数空间的算子的核代数,介绍了量子广义傅里叶-高斯变换、量子第二量子化和量子广义欧拉算子,其中量子微分第二量子化和量子广义广义拉普拉斯算子是典型的例子。给出了量子广义傅里叶-高斯变换、量子二次量子化和量子卷积算子之间的重要关系。然后,利用这一关系,在一定条件下,研究了与量子广义欧拉算子相关的初值问题的解。更准确地说,我们证明了上述解是量子第二量子化和量子卷积算子的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum generalized Euler heat equation

Based on nuclear algebra of operators acting on spaces of entire functions with θ-exponential growth of minimal type, we introduce the quantum generalized Fourier–Gauss transform, the quantum second quantization as well as the quantum generalized Euler operator of which the quantum differential second quantization and the quantum generalized Gross Laplacian are particular examples. Important relation between the quantum generalized Fourier–Gauss transform, the quantum second quantization and the quantum convolution operator is given. Then, using this relation and under some conditions, we investigate the solution of a initial-value problem associated to the quantum generalized Euler operator. More precisely, we show that the aforementioned solution is the composition of a quantum second quantization and a quantum convolution operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信