车辆识别码检测与识别的弱监督学习方法

Q3 Engineering
Cao Zhi, Shang Lidan, Yin Dong
{"title":"车辆识别码检测与识别的弱监督学习方法","authors":"Cao Zhi, Shang Lidan, Yin Dong","doi":"10.12086/OEE.2021.200270","DOIUrl":null,"url":null,"abstract":"The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weakly supervised learning method for vehicle identification code detection and recognition\",\"authors\":\"Cao Zhi, Shang Lidan, Yin Dong\",\"doi\":\"10.12086/OEE.2021.200270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

车辆识别码(VIN)对车辆年检具有重要意义。然而,由于缺乏字符级注释,不可能对VIN执行单字符样式检查。为解决这一问题,设计了一种VIN单字符检测识别框架,并提出了一种无字符级标注的弱监督学习算法。首先,对VGG16-BN各层特征信息进行融合,得到包含单字符位置信息和语义信息的融合特征图;其次,设计了字符检测分支和字符识别分支的网络结构,提取融合特征图中单个字符的位置和语义信息;最后,利用文本长度和单字符类别信息,对车辆识别码数据集进行弱监督,不需要字符级标注。在VIN测试集上,实验结果表明,该方法的Hmean得分为0.964,单字符检测识别准确率为95.7%,具有较高的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weakly supervised learning method for vehicle identification code detection and recognition
The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信