一种可解释的基于人工智能的社交物联网知识提取CNN模型:提出一种新模型

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS
Lulwah M. Alkwai
{"title":"一种可解释的基于人工智能的社交物联网知识提取CNN模型:提出一种新模型","authors":"Lulwah M. Alkwai","doi":"10.1109/MSMC.2022.3198023","DOIUrl":null,"url":null,"abstract":"Rich material is buried in the entity’s textual description information, its hierarchical-type information, and the graph’s topological structure information in the knowledge graph. As a result, these data can be a useful supplement to triple information in terms of improving performance. To appropriately exploit these social Internet of Things (IoT) data, entity details are first encoded using artificial-intelligence (AI)-based convolutional neural networks (CNNs). The unit vector and unit description vector are then projected into a given relational space using the hierarchical-type information, thus restricting its semantic content. The graph attention approach is then used to fuse the graph’s topological structure information to calculate the influence of various neighboring points on the entity. To deal with the data-sparse problem, the multihop relationship information among entities is calculated at the same time. Finally, a decoder is used to collect global information among dimensions. Link prediction experiments show that the multisource information combined knowledge representation learning (XAI-CNN) model based on explainable AI (XAI) can effectively use multisource social IoT information beyond triples and that other techniques may be better than the baseline model.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"11 1","pages":"48-51"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Explainable Artificial-Intelligence-Based CNN Model for Knowledge Extraction From the Social Internet of Things: Proposing a New Model\",\"authors\":\"Lulwah M. Alkwai\",\"doi\":\"10.1109/MSMC.2022.3198023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rich material is buried in the entity’s textual description information, its hierarchical-type information, and the graph’s topological structure information in the knowledge graph. As a result, these data can be a useful supplement to triple information in terms of improving performance. To appropriately exploit these social Internet of Things (IoT) data, entity details are first encoded using artificial-intelligence (AI)-based convolutional neural networks (CNNs). The unit vector and unit description vector are then projected into a given relational space using the hierarchical-type information, thus restricting its semantic content. The graph attention approach is then used to fuse the graph’s topological structure information to calculate the influence of various neighboring points on the entity. To deal with the data-sparse problem, the multihop relationship information among entities is calculated at the same time. Finally, a decoder is used to collect global information among dimensions. Link prediction experiments show that the multisource information combined knowledge representation learning (XAI-CNN) model based on explainable AI (XAI) can effectively use multisource social IoT information beyond triples and that other techniques may be better than the baseline model.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"11 1\",\"pages\":\"48-51\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMC.2022.3198023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2022.3198023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 2

摘要

在知识图谱中,实体的文本描述信息、实体的层次类型信息和图的拓扑结构信息中埋藏着丰富的材料。因此,在提高性能方面,这些数据可以作为三重信息的有用补充。为了适当地利用这些社交物联网(IoT)数据,首先使用基于人工智能(AI)的卷积神经网络(cnn)对实体细节进行编码。然后使用层次类型信息将单位向量和单位描述向量投影到给定的关系空间中,从而限制其语义内容。然后利用图注意方法融合图的拓扑结构信息,计算各相邻点对实体的影响。为了解决数据稀疏问题,同时计算实体间的多跳关系信息。最后,利用解码器收集各维度之间的全局信息。链接预测实验表明,基于可解释AI (explainable AI, XAI)的多源信息组合知识表示学习(XAI- cnn)模型可以有效利用超过三元组的多源社会物联网信息,其他技术可能优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Explainable Artificial-Intelligence-Based CNN Model for Knowledge Extraction From the Social Internet of Things: Proposing a New Model
Rich material is buried in the entity’s textual description information, its hierarchical-type information, and the graph’s topological structure information in the knowledge graph. As a result, these data can be a useful supplement to triple information in terms of improving performance. To appropriately exploit these social Internet of Things (IoT) data, entity details are first encoded using artificial-intelligence (AI)-based convolutional neural networks (CNNs). The unit vector and unit description vector are then projected into a given relational space using the hierarchical-type information, thus restricting its semantic content. The graph attention approach is then used to fuse the graph’s topological structure information to calculate the influence of various neighboring points on the entity. To deal with the data-sparse problem, the multihop relationship information among entities is calculated at the same time. Finally, a decoder is used to collect global information among dimensions. Link prediction experiments show that the multisource information combined knowledge representation learning (XAI-CNN) model based on explainable AI (XAI) can effectively use multisource social IoT information beyond triples and that other techniques may be better than the baseline model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信