基于锐利算子的边缘检测

Q3 Computer Science
M. Ahmad, S. Didas, A. Hasanov, J. Iqbal
{"title":"基于锐利算子的边缘检测","authors":"M. Ahmad, S. Didas, A. Hasanov, J. Iqbal","doi":"10.4236/JSIP.2015.62017","DOIUrl":null,"url":null,"abstract":"Ahmad et al. in their paper [1] for the first time proposed to apply sharp function for classification of images. In continuation of their work, in this paper we investigate the use of sharp function as an edge detector through well known diffusion models. Further, we discuss the formulation of weak solution of nonlinear diffusion equation and prove uniqueness of weak solution of nonlinear problem. The anisotropic generalization of sharp operator based diffusion has also been implemented and tested on various types of images.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"103 1","pages":"180-189"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Operator Based Edge Detection\",\"authors\":\"M. Ahmad, S. Didas, A. Hasanov, J. Iqbal\",\"doi\":\"10.4236/JSIP.2015.62017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahmad et al. in their paper [1] for the first time proposed to apply sharp function for classification of images. In continuation of their work, in this paper we investigate the use of sharp function as an edge detector through well known diffusion models. Further, we discuss the formulation of weak solution of nonlinear diffusion equation and prove uniqueness of weak solution of nonlinear problem. The anisotropic generalization of sharp operator based diffusion has also been implemented and tested on various types of images.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"103 1\",\"pages\":\"180-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.62017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.62017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

Ahmad等人在他们的论文[1]中首次提出应用锐函数对图像进行分类。在他们的工作的延续,在本文中,我们研究使用尖锐函数作为边缘检测器通过众所周知的扩散模型。进一步讨论了非线性扩散方程弱解的表达式,证明了非线性问题弱解的唯一性。基于锐算子的扩散的各向异性泛化也在不同类型的图像上进行了实现和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp Operator Based Edge Detection
Ahmad et al. in their paper [1] for the first time proposed to apply sharp function for classification of images. In continuation of their work, in this paper we investigate the use of sharp function as an edge detector through well known diffusion models. Further, we discuss the formulation of weak solution of nonlinear diffusion equation and prove uniqueness of weak solution of nonlinear problem. The anisotropic generalization of sharp operator based diffusion has also been implemented and tested on various types of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信