{"title":"混合控制模型中的松弛和线性规划","authors":"Héctor Jasso-Fuentes, J. Menaldi","doi":"10.4064/am2387-6-2019","DOIUrl":null,"url":null,"abstract":". Some optimality results for hybrid control problems are pre-sented. The hybrid model under study consists of two subdynamics, one of a standard type governed by an ordinary differential equation, and the other of a special type having a discrete evolution. We focus on the case when the interaction between the subdynamics takes place only when the state of the system reaches a given fixed region of the state space. The controller is able to apply two controls, each applied to one of the two subdynamics, whereas the state follows a composite evolution, of continuous type and discrete type. By the relaxation technique, we prove the existence of a pair of controls that minimizes an incurred (discounted) cost. We conclude the analysis by introducing an auxiliary infinite-dimensional linear program to show the equivalence between the initial control problem and its associated relaxed counterpart.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation and linear programs in a hybrid control model\",\"authors\":\"Héctor Jasso-Fuentes, J. Menaldi\",\"doi\":\"10.4064/am2387-6-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Some optimality results for hybrid control problems are pre-sented. The hybrid model under study consists of two subdynamics, one of a standard type governed by an ordinary differential equation, and the other of a special type having a discrete evolution. We focus on the case when the interaction between the subdynamics takes place only when the state of the system reaches a given fixed region of the state space. The controller is able to apply two controls, each applied to one of the two subdynamics, whereas the state follows a composite evolution, of continuous type and discrete type. By the relaxation technique, we prove the existence of a pair of controls that minimizes an incurred (discounted) cost. We conclude the analysis by introducing an auxiliary infinite-dimensional linear program to show the equivalence between the initial control problem and its associated relaxed counterpart.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2387-6-2019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2387-6-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Relaxation and linear programs in a hybrid control model
. Some optimality results for hybrid control problems are pre-sented. The hybrid model under study consists of two subdynamics, one of a standard type governed by an ordinary differential equation, and the other of a special type having a discrete evolution. We focus on the case when the interaction between the subdynamics takes place only when the state of the system reaches a given fixed region of the state space. The controller is able to apply two controls, each applied to one of the two subdynamics, whereas the state follows a composite evolution, of continuous type and discrete type. By the relaxation technique, we prove the existence of a pair of controls that minimizes an incurred (discounted) cost. We conclude the analysis by introducing an auxiliary infinite-dimensional linear program to show the equivalence between the initial control problem and its associated relaxed counterpart.