规定的黎曼对称

A. Chirvasitu
{"title":"规定的黎曼对称","authors":"A. Chirvasitu","doi":"10.3842/SIGMA.2021.030","DOIUrl":null,"url":null,"abstract":"Given a smooth free action of a compact connected Lie group $G$ on a smooth manifold $M$, we show that the space of $G$-invariant Riemannian metrics on $M$ whose automorphism group is precisely $G$ is open dense in the space of all $G$-invariant metrics, provided the dimension of $M$ is \"sufficiently large\" compared to that of $G$. As a consequence, it follows that every compact connected Lie group can be realized as the automorphism group of some compact connected Riemannian manifold. \nAlong the way we also show, under less restrictive conditions on both dimensions and actions, that the space of $G$-invariant metrics whose automorphism groups preserve the $G$-orbits is dense $G_{\\delta}$ in the space of all $G$-invariant metrics.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed Riemannian Symmetries\",\"authors\":\"A. Chirvasitu\",\"doi\":\"10.3842/SIGMA.2021.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a smooth free action of a compact connected Lie group $G$ on a smooth manifold $M$, we show that the space of $G$-invariant Riemannian metrics on $M$ whose automorphism group is precisely $G$ is open dense in the space of all $G$-invariant metrics, provided the dimension of $M$ is \\\"sufficiently large\\\" compared to that of $G$. As a consequence, it follows that every compact connected Lie group can be realized as the automorphism group of some compact connected Riemannian manifold. \\nAlong the way we also show, under less restrictive conditions on both dimensions and actions, that the space of $G$-invariant metrics whose automorphism groups preserve the $G$-orbits is dense $G_{\\\\delta}$ in the space of all $G$-invariant metrics.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2021.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出光滑流形$M$上紧连通李群$G$的光滑自由作用,证明了$G$的自同构群恰好为$G$的$G$不变黎曼度量空间在所有$G$不变度量空间中是开密的,只要$M$的维数相对于$G$的维数“足够大”。由此得出,每一个紧连通李群都可以被实现为某个紧连通黎曼流形的自同构群。在此过程中,我们还证明了,在维数和作用较少的限制条件下,其自同构群保留G轨道的G不变度量的空间在所有G不变度量的空间中是稠密的G_{\delta}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed Riemannian Symmetries
Given a smooth free action of a compact connected Lie group $G$ on a smooth manifold $M$, we show that the space of $G$-invariant Riemannian metrics on $M$ whose automorphism group is precisely $G$ is open dense in the space of all $G$-invariant metrics, provided the dimension of $M$ is "sufficiently large" compared to that of $G$. As a consequence, it follows that every compact connected Lie group can be realized as the automorphism group of some compact connected Riemannian manifold. Along the way we also show, under less restrictive conditions on both dimensions and actions, that the space of $G$-invariant metrics whose automorphism groups preserve the $G$-orbits is dense $G_{\delta}$ in the space of all $G$-invariant metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信