关于n-李代数非阿贝尔张量平方的维数

IF 0.7 Q2 MATHEMATICS
F. Saeedi, Nafiseh Akbarossadat
{"title":"关于n-李代数非阿贝尔张量平方的维数","authors":"F. Saeedi, Nafiseh Akbarossadat","doi":"10.5556/J.TKJM.52.2021.3373","DOIUrl":null,"url":null,"abstract":"Let $L$ be an $n$-Lie algebra over a field $\\F$. In this paper, we introduce the notion of non-abelian tensor square $L\\otimes L$ of $L$ and define the central ideal $L\\square L$ of it. Using techniques from group theory and Lie algebras, we show that that $L\\square L\\cong L^{ab}\\square L^{ab}$. Also, we establish the short exact sequence\\[0\\lra\\M(L)\\lra\\frac{L\\otimes L}{L\\square L}\\lra L^2\\lra0\\]and apply it to compute an upper bound for the dimension of non-abelian tensor square of $L$.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Dimension of Non-Abelian Tensor Squares of $n$-Lie Algebras\",\"authors\":\"F. Saeedi, Nafiseh Akbarossadat\",\"doi\":\"10.5556/J.TKJM.52.2021.3373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be an $n$-Lie algebra over a field $\\\\F$. In this paper, we introduce the notion of non-abelian tensor square $L\\\\otimes L$ of $L$ and define the central ideal $L\\\\square L$ of it. Using techniques from group theory and Lie algebras, we show that that $L\\\\square L\\\\cong L^{ab}\\\\square L^{ab}$. Also, we establish the short exact sequence\\\\[0\\\\lra\\\\M(L)\\\\lra\\\\frac{L\\\\otimes L}{L\\\\square L}\\\\lra L^2\\\\lra0\\\\]and apply it to compute an upper bound for the dimension of non-abelian tensor square of $L$.\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.52.2021.3373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.52.2021.3373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$L$是域$\F$上的$n$ -李代数。本文引入了$L$的非阿贝尔张量平方$L\otimes L$的概念,并定义了它的中心理想$L\square L$。利用群论和李代数的技术,我们证明了$L\square L\cong L^{ab}\square L^{ab}$。同时,我们建立了短精确序列\[0\lra\M(L)\lra\frac{L\otimes L}{L\square L}\lra L^2\lra0\],并应用它计算了$L$的非阿贝尔张量平方维数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Dimension of Non-Abelian Tensor Squares of $n$-Lie Algebras
Let $L$ be an $n$-Lie algebra over a field $\F$. In this paper, we introduce the notion of non-abelian tensor square $L\otimes L$ of $L$ and define the central ideal $L\square L$ of it. Using techniques from group theory and Lie algebras, we show that that $L\square L\cong L^{ab}\square L^{ab}$. Also, we establish the short exact sequence\[0\lra\M(L)\lra\frac{L\otimes L}{L\square L}\lra L^2\lra0\]and apply it to compute an upper bound for the dimension of non-abelian tensor square of $L$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信