Dirichlet l -函数的同时不消失和hecke - mass l -函数在临界带的扭曲

IF 0.9 4区 数学 Q2 Mathematics
Keiju Sono
{"title":"Dirichlet l -函数的同时不消失和hecke - mass l -函数在临界带的扭曲","authors":"Keiju Sono","doi":"10.5186/AASFM.2019.4464","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we consider the moment of the products of primitive Dirichlet Lfunctions and L-functions associated with a Hecke–Maass form of SL(2,Z) twisted by primitive Dirichlet characters. We prove that for any Hecke–Maass form f of SL(2,Z) and s0 = σ0 + it0 with 1/2 ≤ σ0 < 1, L(s0, f ⊗ χ)L(s0, χ) 6= 0 holds for some primitive Dirichlet character χ if the conductor of χ is prime and sufficiently large. In particular, we show that unconditionally L(1/2+ it, f⊗χ)L(1/2+ it, χ) 6= 0 for some primitive Dirichlet character modulo q for prime values of q satisfying q ≫ (1 + |t|)255+ǫ. If we assume the Ramanujan–Petersson conjecture, the same statement is valid for any prime values of q such that q ≫ (1 + |t|)15+ǫ.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke–Maass L-functions in the critical strip\",\"authors\":\"Keiju Sono\",\"doi\":\"10.5186/AASFM.2019.4464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we consider the moment of the products of primitive Dirichlet Lfunctions and L-functions associated with a Hecke–Maass form of SL(2,Z) twisted by primitive Dirichlet characters. We prove that for any Hecke–Maass form f of SL(2,Z) and s0 = σ0 + it0 with 1/2 ≤ σ0 < 1, L(s0, f ⊗ χ)L(s0, χ) 6= 0 holds for some primitive Dirichlet character χ if the conductor of χ is prime and sufficiently large. In particular, we show that unconditionally L(1/2+ it, f⊗χ)L(1/2+ it, χ) 6= 0 for some primitive Dirichlet character modulo q for prime values of q satisfying q ≫ (1 + |t|)255+ǫ. If we assume the Ramanujan–Petersson conjecture, the same statement is valid for any prime values of q such that q ≫ (1 + |t|)15+ǫ.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4464\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4464","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

摘要在本文中,我们考虑了原始狄利克雷l函数与l函数的积的矩,这些积与被原始狄利克雷字符扭曲的SL(2,Z)的hecke - mass形式有关。我们证明了对于任意的heke - mass形式f (SL(2,Z),且s0 = σ0 + it0且1/2≤σ0 < 1, L(s0, f⊗χ)L(s0, χ) 6= 0对某些原始Dirichlet特征χ成立,如果χ的导体是素数且足够大。特别地,我们证明了L(1/2+ it, f⊗χ)L(1/2+ it, χ) 6= 0,对于q的素数q满足q < (1 + |t|)255+ ø, L(1/2+ it, f⊗χ) 6= 0。如果我们假设Ramanujan-Petersson猜想,同样的命题对q的任何素值都成立,使得q < (1 + |t|)15+ ø。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke–Maass L-functions in the critical strip
Abstract. In this paper, we consider the moment of the products of primitive Dirichlet Lfunctions and L-functions associated with a Hecke–Maass form of SL(2,Z) twisted by primitive Dirichlet characters. We prove that for any Hecke–Maass form f of SL(2,Z) and s0 = σ0 + it0 with 1/2 ≤ σ0 < 1, L(s0, f ⊗ χ)L(s0, χ) 6= 0 holds for some primitive Dirichlet character χ if the conductor of χ is prime and sufficiently large. In particular, we show that unconditionally L(1/2+ it, f⊗χ)L(1/2+ it, χ) 6= 0 for some primitive Dirichlet character modulo q for prime values of q satisfying q ≫ (1 + |t|)255+ǫ. If we assume the Ramanujan–Petersson conjecture, the same statement is valid for any prime values of q such that q ≫ (1 + |t|)15+ǫ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信