从聚合视图中学习

Bee-Chung Chen, Lei Chen, R. Ramakrishnan, D. Musicant
{"title":"从聚合视图中学习","authors":"Bee-Chung Chen, Lei Chen, R. Ramakrishnan, D. Musicant","doi":"10.1109/ICDE.2006.86","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of data mining problems called learning from aggregate views. In contrast to the traditional problem of learning from a single table of training examples, the new goal is to learn from multiple aggregate views of the underlying data, without access to the un-aggregated data. We motivate this new problem, present a general problem framework, develop learning methods for RFA (Restriction-Free Aggregate) views defined using COUNT, SUM, AVG and STDEV, and offer theoretical and experimental results that characterize the proposed methods.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"492 1","pages":"3-3"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Learning from Aggregate Views\",\"authors\":\"Bee-Chung Chen, Lei Chen, R. Ramakrishnan, D. Musicant\",\"doi\":\"10.1109/ICDE.2006.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new class of data mining problems called learning from aggregate views. In contrast to the traditional problem of learning from a single table of training examples, the new goal is to learn from multiple aggregate views of the underlying data, without access to the un-aggregated data. We motivate this new problem, present a general problem framework, develop learning methods for RFA (Restriction-Free Aggregate) views defined using COUNT, SUM, AVG and STDEV, and offer theoretical and experimental results that characterize the proposed methods.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"492 1\",\"pages\":\"3-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在本文中,我们引入了一类新的数据挖掘问题,称为从聚合视图中学习。与从单个训练样例表中学习的传统问题相比,新的目标是从底层数据的多个聚合视图中学习,而不需要访问未聚合的数据。我们提出了这个新问题,提出了一个通用的问题框架,开发了使用COUNT, SUM, AVG和STDEV定义的RFA(无限制聚合)视图的学习方法,并提供了表征所提出方法的理论和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from Aggregate Views
In this paper, we introduce a new class of data mining problems called learning from aggregate views. In contrast to the traditional problem of learning from a single table of training examples, the new goal is to learn from multiple aggregate views of the underlying data, without access to the un-aggregated data. We motivate this new problem, present a general problem framework, develop learning methods for RFA (Restriction-Free Aggregate) views defined using COUNT, SUM, AVG and STDEV, and offer theoretical and experimental results that characterize the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信