双广义复Fibonacci和Lucas四元数的构造

IF 1 Q1 MATHEMATICS
G. Y. Şentürk, N. Gürses, S. Yüce
{"title":"双广义复Fibonacci和Lucas四元数的构造","authors":"G. Y. Şentürk, N. Gürses, S. Yüce","doi":"10.15330/cmp.14.2.406-418","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to construct dual-generalized complex Fibonacci and Lucas quaternions. It examines the properties both as dual-generalized complex number and as quaternion. Additionally, general recurrence relations, Binet's formulas, Tagiuri's (or Vajda's like), Honsberger's, d'Ocagne's, Cassini's and Catalan's identities are obtained. A series of matrix representations of these special quaternions is introduced. Finally, the multiplication of dual-generalized complex Fibonacci and Lucas quaternions are also expressed as their different matrix representations.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Construction of dual-generalized complex Fibonacci and Lucas quaternions\",\"authors\":\"G. Y. Şentürk, N. Gürses, S. Yüce\",\"doi\":\"10.15330/cmp.14.2.406-418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to construct dual-generalized complex Fibonacci and Lucas quaternions. It examines the properties both as dual-generalized complex number and as quaternion. Additionally, general recurrence relations, Binet's formulas, Tagiuri's (or Vajda's like), Honsberger's, d'Ocagne's, Cassini's and Catalan's identities are obtained. A series of matrix representations of these special quaternions is introduced. Finally, the multiplication of dual-generalized complex Fibonacci and Lucas quaternions are also expressed as their different matrix representations.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.406-418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.406-418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是构造双广义复Fibonacci和Lucas四元数。研究了双广义复数和四元数的性质。此外,还得到了一般递归关系、Binet公式、Tagiuri公式(或类似Vajda公式)、Honsberger公式、d’ocagne公式、Cassini公式和Catalan公式。介绍了这些特殊四元数的一系列矩阵表示。最后,将双广义复Fibonacci和Lucas四元数的乘法也表示为它们的不同矩阵表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of dual-generalized complex Fibonacci and Lucas quaternions
The aim of this paper is to construct dual-generalized complex Fibonacci and Lucas quaternions. It examines the properties both as dual-generalized complex number and as quaternion. Additionally, general recurrence relations, Binet's formulas, Tagiuri's (or Vajda's like), Honsberger's, d'Ocagne's, Cassini's and Catalan's identities are obtained. A series of matrix representations of these special quaternions is introduced. Finally, the multiplication of dual-generalized complex Fibonacci and Lucas quaternions are also expressed as their different matrix representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信