{"title":"对角循环与欧拉系统I: A $p$-adic Gross-Zagier公式","authors":"H. Darmon, V. Rotger","doi":"10.24033/ASENS.2227","DOIUrl":null,"url":null,"abstract":"This article is the first in a series devoted to studying generalised Gross-KudlaSchoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch–Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the p-adic Abel-Jacobi map to special values of certain p-adic Lfunctions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula. Cet article est le premier d’une serie consacree aux cycles de Gross-Kudla-Schoen generalises appartenant aux groupes de Chow de produits de trois varietes de Kuga-Sato, et aux systemes d’Euler qui leur sont associes. La serie au complet repose sur une variante p-adique de la formule de Gross-Zagier qui relie l’image des cycles de Gross-Kudla-Schoen par l’application d’Abel-Jacobi p-adique aux valeurs speciales de certaines fonctions L p-adiques attachees a la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L’objectif principal de cet article est de decrire et de demontrer cette variante. MSC: 11F12, 11G05, 11G35, 11G40.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"134 1","pages":"779-832"},"PeriodicalIF":1.3000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula\",\"authors\":\"H. Darmon, V. Rotger\",\"doi\":\"10.24033/ASENS.2227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is the first in a series devoted to studying generalised Gross-KudlaSchoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch–Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the p-adic Abel-Jacobi map to special values of certain p-adic Lfunctions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula. Cet article est le premier d’une serie consacree aux cycles de Gross-Kudla-Schoen generalises appartenant aux groupes de Chow de produits de trois varietes de Kuga-Sato, et aux systemes d’Euler qui leur sont associes. La serie au complet repose sur une variante p-adique de la formule de Gross-Zagier qui relie l’image des cycles de Gross-Kudla-Schoen par l’application d’Abel-Jacobi p-adique aux valeurs speciales de certaines fonctions L p-adiques attachees a la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L’objectif principal de cet article est de decrire et de demontrer cette variante. MSC: 11F12, 11G05, 11G35, 11G40.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"134 1\",\"pages\":\"779-832\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ASENS.2227\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2227","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 105
摘要
本文是一系列致力于研究三个Kuga-Sato变积中的广义Gross-KudlaSchoen对角环和相关Selmer类的欧拉系统性质的文章中的第一篇,特别强调它们在Birch-Swinnerton-Dyer猜想和Stark-Heegner点理论中的应用。整个研究的基础是一个p进的Gross-Zagier型公式,该公式将p进Abel-Jacobi映射下这些对角环的像与附加在三个模形式的Hida族的Garrett-Rankin三重卷积上的某些p进l函数的特殊值联系起来。本文的主要目的是描述和证明这个公式。这篇文章测试了le premier d 'une serie consacree aux cycles de Gross-Kudla-Schoen概括了明显的aux groups de Chow de producties de trois vartes de Kuga-Sato,以及aux systemes d 'Euler quur sontassocies。在Gross-Zagier的公式中,我们得到了一个完整的函数,我们得到了一个完整的函数,我们得到了一个完整的函数,我们得到了一个完整的函数,我们得到了一个完整的函数,我们得到了一个完整的函数,我们得到了一个完整的函数。客观原则决定了文章的性质,决定了论证的性质,决定了变量。Msc: 11f12, 11g05, 11g35, 11g40。
Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula
This article is the first in a series devoted to studying generalised Gross-KudlaSchoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch–Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the p-adic Abel-Jacobi map to special values of certain p-adic Lfunctions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula. Cet article est le premier d’une serie consacree aux cycles de Gross-Kudla-Schoen generalises appartenant aux groupes de Chow de produits de trois varietes de Kuga-Sato, et aux systemes d’Euler qui leur sont associes. La serie au complet repose sur une variante p-adique de la formule de Gross-Zagier qui relie l’image des cycles de Gross-Kudla-Schoen par l’application d’Abel-Jacobi p-adique aux valeurs speciales de certaines fonctions L p-adiques attachees a la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L’objectif principal de cet article est de decrire et de demontrer cette variante. MSC: 11F12, 11G05, 11G35, 11G40.
期刊介绍:
The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics.
Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition.
The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.