基于各向异性误差模型的点云滤波方法

M. Ozendi, D. Akca, H. Topan
{"title":"基于各向异性误差模型的点云滤波方法","authors":"M. Ozendi, D. Akca, H. Topan","doi":"10.1111/phor.12460","DOIUrl":null,"url":null,"abstract":"Many modelling applications require 3D meshes that should be generated from filtered/cleaned point clouds. This paper proposes a methodology for filtering of terrestrial laser scanner (TLS)‐derived point clouds, consisting of two main parts: an anisotropic point error model and the subsequent decimation steps for elimination of low‐quality points. The point error model can compute the positional quality of any point in the form of error ellipsoids. It is formulated as a function of the angular/mechanical stability, sensor‐to‐object distance, laser beam's incidence angle and surface reflectivity, which are the most dominant error sources. In a block of several co‐registered point clouds, some parts of the target object are sampled by multiple scans with different positional quality patterns. This situation results in redundant data. The proposed decimation steps removes this redundancy by selecting only the points with the highest positional quality. Finally, the Good, Bad, and the Better algorithm, based on the ray‐tracing concept, was developed to remove the remaining redundancy due to the Moiré effects. The resulting point cloud consists of only the points with the highest positional quality while reducing the number of points by factor 10. This novel approach resulted in final surface meshes that are accurate, contain predefined level of random errors and require almost no manual intervention.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A point cloud filtering method based on anisotropic error model\",\"authors\":\"M. Ozendi, D. Akca, H. Topan\",\"doi\":\"10.1111/phor.12460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many modelling applications require 3D meshes that should be generated from filtered/cleaned point clouds. This paper proposes a methodology for filtering of terrestrial laser scanner (TLS)‐derived point clouds, consisting of two main parts: an anisotropic point error model and the subsequent decimation steps for elimination of low‐quality points. The point error model can compute the positional quality of any point in the form of error ellipsoids. It is formulated as a function of the angular/mechanical stability, sensor‐to‐object distance, laser beam's incidence angle and surface reflectivity, which are the most dominant error sources. In a block of several co‐registered point clouds, some parts of the target object are sampled by multiple scans with different positional quality patterns. This situation results in redundant data. The proposed decimation steps removes this redundancy by selecting only the points with the highest positional quality. Finally, the Good, Bad, and the Better algorithm, based on the ray‐tracing concept, was developed to remove the remaining redundancy due to the Moiré effects. The resulting point cloud consists of only the points with the highest positional quality while reducing the number of points by factor 10. This novel approach resulted in final surface meshes that are accurate, contain predefined level of random errors and require almost no manual intervention.\",\"PeriodicalId\":22881,\"journal\":{\"name\":\"The Photogrammetric Record\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Photogrammetric Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/phor.12460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多建模应用程序需要从过滤/清理的点云生成3D网格。本文提出了一种地面激光扫描仪(TLS)衍生点云的滤波方法,包括两个主要部分:各向异性点误差模型和随后用于消除低质量点的抽取步骤。点误差模型可以以误差椭球的形式计算任意点的位置质量。它是角/机械稳定性、传感器-物体距离、激光束入射角和表面反射率的函数,这是最主要的误差来源。在由多个共同配准的点云组成的块中,目标物体的某些部分通过具有不同位置质量模式的多次扫描进行采样。这种情况导致数据冗余。所提出的抽取步骤通过只选择具有最高位置质量的点来消除这种冗余。最后,基于光线追踪概念,开发了Good, Bad和Better算法,以消除由于莫尔效应而产生的剩余冗余。生成的点云只由位置质量最高的点组成,同时将点的数量减少10倍。这种新颖的方法使最终的表面网格精确,包含预定义的随机误差水平,几乎不需要人工干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A point cloud filtering method based on anisotropic error model
Many modelling applications require 3D meshes that should be generated from filtered/cleaned point clouds. This paper proposes a methodology for filtering of terrestrial laser scanner (TLS)‐derived point clouds, consisting of two main parts: an anisotropic point error model and the subsequent decimation steps for elimination of low‐quality points. The point error model can compute the positional quality of any point in the form of error ellipsoids. It is formulated as a function of the angular/mechanical stability, sensor‐to‐object distance, laser beam's incidence angle and surface reflectivity, which are the most dominant error sources. In a block of several co‐registered point clouds, some parts of the target object are sampled by multiple scans with different positional quality patterns. This situation results in redundant data. The proposed decimation steps removes this redundancy by selecting only the points with the highest positional quality. Finally, the Good, Bad, and the Better algorithm, based on the ray‐tracing concept, was developed to remove the remaining redundancy due to the Moiré effects. The resulting point cloud consists of only the points with the highest positional quality while reducing the number of points by factor 10. This novel approach resulted in final surface meshes that are accurate, contain predefined level of random errors and require almost no manual intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信