基于扩展状态的Kalman-Bucy滤波

Xiaocheng Zhang, Wenchao Xue, H. Fang, Xingkang He
{"title":"基于扩展状态的Kalman-Bucy滤波","authors":"Xiaocheng Zhang, Wenchao Xue, H. Fang, Xingkang He","doi":"10.1109/DDCLS.2018.8515987","DOIUrl":null,"url":null,"abstract":"This paper studies the state estimation problem for a class of continuous-time stochastic systems with unknown nonlinear dynamics and measurement noise. Enlightened by the extended state observer (ESO) in timely estimating both the internal unknown dynamics and the external disturbance of systems, the paper constructs the extended state based KalmanBucy filter (ESKBF) to achieve better filtering performance. It is shown that ESKBF can provide the upper bound of the covariance matrix of estimation error, which is critical in evaluating the filtering precision. Besides, the stability of ESKBF is rigorously proven in the presence of unknown nonlinear dynamics, while the stability of traditional Kalman-Bucy filter is hard to be guaranteed under the same condition. Moreover, the asymptotic optimality of ESKBF for time-invariant system under constant disturbance is given. Finally, numerical simulations show the effectiveness of the method.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"81 1","pages":"1158-1163"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Extended State Based Kalman-Bucy Filter\",\"authors\":\"Xiaocheng Zhang, Wenchao Xue, H. Fang, Xingkang He\",\"doi\":\"10.1109/DDCLS.2018.8515987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the state estimation problem for a class of continuous-time stochastic systems with unknown nonlinear dynamics and measurement noise. Enlightened by the extended state observer (ESO) in timely estimating both the internal unknown dynamics and the external disturbance of systems, the paper constructs the extended state based KalmanBucy filter (ESKBF) to achieve better filtering performance. It is shown that ESKBF can provide the upper bound of the covariance matrix of estimation error, which is critical in evaluating the filtering precision. Besides, the stability of ESKBF is rigorously proven in the presence of unknown nonlinear dynamics, while the stability of traditional Kalman-Bucy filter is hard to be guaranteed under the same condition. Moreover, the asymptotic optimality of ESKBF for time-invariant system under constant disturbance is given. Finally, numerical simulations show the effectiveness of the method.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"81 1\",\"pages\":\"1158-1163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8515987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8515987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了一类具有未知非线性动力学和测量噪声的连续随机系统的状态估计问题。借鉴扩展状态观测器(ESO)在及时估计系统内部未知动态和外部干扰方面的优点,构造了基于扩展状态的KalmanBucy滤波器(ESKBF),以获得更好的滤波性能。结果表明,ESKBF可以提供估计误差协方差矩阵的上界,这是评价滤波精度的关键。此外,严格证明了ESKBF在未知非线性动力学条件下的稳定性,而传统Kalman-Bucy滤波器在相同条件下的稳定性难以保证。此外,给出了常扰动下时不变系统的ESKBF的渐近最优性。最后,通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Extended State Based Kalman-Bucy Filter
This paper studies the state estimation problem for a class of continuous-time stochastic systems with unknown nonlinear dynamics and measurement noise. Enlightened by the extended state observer (ESO) in timely estimating both the internal unknown dynamics and the external disturbance of systems, the paper constructs the extended state based KalmanBucy filter (ESKBF) to achieve better filtering performance. It is shown that ESKBF can provide the upper bound of the covariance matrix of estimation error, which is critical in evaluating the filtering precision. Besides, the stability of ESKBF is rigorously proven in the presence of unknown nonlinear dynamics, while the stability of traditional Kalman-Bucy filter is hard to be guaranteed under the same condition. Moreover, the asymptotic optimality of ESKBF for time-invariant system under constant disturbance is given. Finally, numerical simulations show the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信