{"title":"带空气空间的多壁板传声损失的理论研究","authors":"T. Natsuki, Jun Natsuki","doi":"10.9734/AJR2P/2019/V2I129801","DOIUrl":null,"url":null,"abstract":"In this study, an analytical model is proposed to investigate the sound transmission loss through multi-walled plates with air layers or decompression air layers, under the diffuse incidence field. Using the present approach, the influences of various parameters, such as the wall thickness, the decompressed air and the thickness of air space, on the sound transmission loss through are simulated and discussed in detail. It is seen that, due to the wave frequency of mass-air-mass resonance between double-walled glass plates, the sound transmission loss of the plates can be improved at low frequency range. The sound transmission loss tends to increase with decreasing air pressure because the sound is not transmitted through vacuum space. The design method can be used to investigate the effect of various geometric and material parameters on the sound transmission loss. The advantage of the simulation procedure is easily used for designing the layer structures with different parameter to improve the sound insulation effect.","PeriodicalId":8529,"journal":{"name":"Asian Journal of Research and Reviews in Physics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Theoretical Investigation on Sound Transmission Loss through Multi-walled Plates with Air Space\",\"authors\":\"T. Natsuki, Jun Natsuki\",\"doi\":\"10.9734/AJR2P/2019/V2I129801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an analytical model is proposed to investigate the sound transmission loss through multi-walled plates with air layers or decompression air layers, under the diffuse incidence field. Using the present approach, the influences of various parameters, such as the wall thickness, the decompressed air and the thickness of air space, on the sound transmission loss through are simulated and discussed in detail. It is seen that, due to the wave frequency of mass-air-mass resonance between double-walled glass plates, the sound transmission loss of the plates can be improved at low frequency range. The sound transmission loss tends to increase with decreasing air pressure because the sound is not transmitted through vacuum space. The design method can be used to investigate the effect of various geometric and material parameters on the sound transmission loss. The advantage of the simulation procedure is easily used for designing the layer structures with different parameter to improve the sound insulation effect.\",\"PeriodicalId\":8529,\"journal\":{\"name\":\"Asian Journal of Research and Reviews in Physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Research and Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/AJR2P/2019/V2I129801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research and Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/AJR2P/2019/V2I129801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Theoretical Investigation on Sound Transmission Loss through Multi-walled Plates with Air Space
In this study, an analytical model is proposed to investigate the sound transmission loss through multi-walled plates with air layers or decompression air layers, under the diffuse incidence field. Using the present approach, the influences of various parameters, such as the wall thickness, the decompressed air and the thickness of air space, on the sound transmission loss through are simulated and discussed in detail. It is seen that, due to the wave frequency of mass-air-mass resonance between double-walled glass plates, the sound transmission loss of the plates can be improved at low frequency range. The sound transmission loss tends to increase with decreasing air pressure because the sound is not transmitted through vacuum space. The design method can be used to investigate the effect of various geometric and material parameters on the sound transmission loss. The advantage of the simulation procedure is easily used for designing the layer structures with different parameter to improve the sound insulation effect.