由循环群和有限制单幂元的线性群解放

IF 0.1 Q4 MATHEMATICS
J. Button
{"title":"由循环群和有限制单幂元的线性群解放","authors":"J. Button","doi":"10.1515/gcc-2017-0009","DOIUrl":null,"url":null,"abstract":"Abstract We introduce the class of linear groups that do not contain unipotent elements of infinite order, which includes all linear groups in positive characteristic. We show that groups in this class have good closure properties, in addition to having properties akin to non-positive curvature, which were proved in [6]. We give examples of abstract groups lying in this class, but also show that Gersten’s free by cyclic group does not. This implies that it has no faithful linear representation of any dimension over any field of positive characteristic, nor can it be embedded in any complex unitary group.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":"137 - 149"},"PeriodicalIF":0.1000,"publicationDate":"2017-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Free by cyclic groups and linear groups with restricted unipotent elements\",\"authors\":\"J. Button\",\"doi\":\"10.1515/gcc-2017-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce the class of linear groups that do not contain unipotent elements of infinite order, which includes all linear groups in positive characteristic. We show that groups in this class have good closure properties, in addition to having properties akin to non-positive curvature, which were proved in [6]. We give examples of abstract groups lying in this class, but also show that Gersten’s free by cyclic group does not. This implies that it has no faithful linear representation of any dimension over any field of positive characteristic, nor can it be embedded in any complex unitary group.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"137 - 149\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2017-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要引入了一类不含无穷阶单幂元的线性群,它包含了所有具有正特征的线性群。我们证明了这类群除了具有类似于非正曲率的性质外,还具有良好的闭包性质,这在[6]中得到了证明。我们给出了该类中存在的抽象群的例子,但也证明了Gersten的自由环群不存在。这意味着它在任何正特征域上都没有任何维的忠实线性表示,也不能嵌入到任何复酉群中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free by cyclic groups and linear groups with restricted unipotent elements
Abstract We introduce the class of linear groups that do not contain unipotent elements of infinite order, which includes all linear groups in positive characteristic. We show that groups in this class have good closure properties, in addition to having properties akin to non-positive curvature, which were proved in [6]. We give examples of abstract groups lying in this class, but also show that Gersten’s free by cyclic group does not. This implies that it has no faithful linear representation of any dimension over any field of positive characteristic, nor can it be embedded in any complex unitary group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信