{"title":"一般滤波中带跳跃的倒向随机Volterra积分方程","authors":"A. Popier","doi":"10.1051/PS/2021006","DOIUrl":null,"url":null,"abstract":"In this paper, we study backward stochastic Volterra integral equations introduced in Lin [Stochastic Anal. Appl. 20 (2002) 165–183] and Yong [Stochastic Process. Appl. 116 (2006) 779–795] and extend the existence, uniqueness or comparison results for general filtration as in Papapantoleon et al. [Electron. J. Probab. 23 (2018) EJP240] (not only Brownian-Poisson setting). We also consider Lp-data and explore the time regularity of the solution in the Itô setting, which is also new in this jump setting.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Backward stochastic Volterra integral equations with jumps in a general filtration\",\"authors\":\"A. Popier\",\"doi\":\"10.1051/PS/2021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study backward stochastic Volterra integral equations introduced in Lin [Stochastic Anal. Appl. 20 (2002) 165–183] and Yong [Stochastic Process. Appl. 116 (2006) 779–795] and extend the existence, uniqueness or comparison results for general filtration as in Papapantoleon et al. [Electron. J. Probab. 23 (2018) EJP240] (not only Brownian-Poisson setting). We also consider Lp-data and explore the time regularity of the solution in the Itô setting, which is also new in this jump setting.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/PS/2021006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/PS/2021006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backward stochastic Volterra integral equations with jumps in a general filtration
In this paper, we study backward stochastic Volterra integral equations introduced in Lin [Stochastic Anal. Appl. 20 (2002) 165–183] and Yong [Stochastic Process. Appl. 116 (2006) 779–795] and extend the existence, uniqueness or comparison results for general filtration as in Papapantoleon et al. [Electron. J. Probab. 23 (2018) EJP240] (not only Brownian-Poisson setting). We also consider Lp-data and explore the time regularity of the solution in the Itô setting, which is also new in this jump setting.