弹性材料粘接问题的分析

Q4 Mathematics
A. Touzaline
{"title":"弹性材料粘接问题的分析","authors":"A. Touzaline","doi":"10.4064/AM2296-7-2016","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to study a mathematical model which describes the adhesive frictionless contact between a deformable body and a foundation. The body consists of an elastic material and the process is assumed to be quasistatic. The adhesive contact condition on the normal direction is modeled by a version of normal compliance condition with unilateral constraint. The adhesion is modeled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We present a variational formulation of the mechanical problem and prove the existence and uniqueness of a weak solution. Also, we study a penalized contact problem which admits a unique solution. We prove that when the penalization parameter converges to zero, the solution converges to the solution of the original model. The technique of the proof is based on time-dependent variational inequalities, differential equations and the Banach fixed-point theorem.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"39 1","pages":"15-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of an adhesive contact problem for elastic materials\",\"authors\":\"A. Touzaline\",\"doi\":\"10.4064/AM2296-7-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to study a mathematical model which describes the adhesive frictionless contact between a deformable body and a foundation. The body consists of an elastic material and the process is assumed to be quasistatic. The adhesive contact condition on the normal direction is modeled by a version of normal compliance condition with unilateral constraint. The adhesion is modeled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We present a variational formulation of the mechanical problem and prove the existence and uniqueness of a weak solution. Also, we study a penalized contact problem which admits a unique solution. We prove that when the penalization parameter converges to zero, the solution converges to the solution of the original model. The technique of the proof is based on time-dependent variational inequalities, differential equations and the Banach fixed-point theorem.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"39 1\",\"pages\":\"15-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2296-7-2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2296-7-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究一种描述可变形体与地基之间无摩擦接触的数学模型。物体由弹性材料组成,过程假定为准静态。在法向上的粘接接触条件采用一种带单边约束的法向柔度条件来建模。结合过程采用表面变量——结合场来建模,结合场的演化用一阶微分方程来描述。给出了一个力学问题的变分形式,并证明了一个弱解的存在唯一性。此外,我们还研究了一个有唯一解的惩罚接触问题。证明了当惩罚参数收敛于零时,解收敛于原模型的解。证明的方法是基于时变分不等式、微分方程和巴拿赫不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of an adhesive contact problem for elastic materials
The goal of this paper is to study a mathematical model which describes the adhesive frictionless contact between a deformable body and a foundation. The body consists of an elastic material and the process is assumed to be quasistatic. The adhesive contact condition on the normal direction is modeled by a version of normal compliance condition with unilateral constraint. The adhesion is modeled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We present a variational formulation of the mechanical problem and prove the existence and uniqueness of a weak solution. Also, we study a penalized contact problem which admits a unique solution. We prove that when the penalization parameter converges to zero, the solution converges to the solution of the original model. The technique of the proof is based on time-dependent variational inequalities, differential equations and the Banach fixed-point theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信