不同资源约束下的非随机化

Samuel Epstein
{"title":"不同资源约束下的非随机化","authors":"Samuel Epstein","doi":"10.48550/arXiv.2211.14640","DOIUrl":null,"url":null,"abstract":"We provide another proof to the EL Theorem. We show the tradeoff between compressibility of codebooks and their communication capacity. A resource bounded version of the EL Theorem is proven. This is used to prove three instances of resource bounded derandomization. This paper is in support of the general claim that if the existence of an object can be proven with the probabilistic method, then bounds on its Kolmogorov complexity can be proven as well.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"508 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derandomization under Different Resource Constraints\",\"authors\":\"Samuel Epstein\",\"doi\":\"10.48550/arXiv.2211.14640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide another proof to the EL Theorem. We show the tradeoff between compressibility of codebooks and their communication capacity. A resource bounded version of the EL Theorem is proven. This is used to prove three instances of resource bounded derandomization. This paper is in support of the general claim that if the existence of an object can be proven with the probabilistic method, then bounds on its Kolmogorov complexity can be proven as well.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"508 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.14640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.14640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提供了EL定理的另一个证明。我们展示了码本的可压缩性和它们的通信能力之间的权衡。证明了EL定理的一个资源有界版本。这是用来证明三个实例的资源有界非随机化。本文支持一个普遍的主张,即如果一个对象的存在性可以用概率方法证明,那么它的Kolmogorov复杂度的界也可以被证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derandomization under Different Resource Constraints
We provide another proof to the EL Theorem. We show the tradeoff between compressibility of codebooks and their communication capacity. A resource bounded version of the EL Theorem is proven. This is used to prove three instances of resource bounded derandomization. This paper is in support of the general claim that if the existence of an object can be proven with the probabilistic method, then bounds on its Kolmogorov complexity can be proven as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信