多阶段随机规划中的风险规避后悔最小化

IF 0.7 4区 管理学 Q3 Engineering
Mehran Poursoltani, E. Delage, A. Georghiou
{"title":"多阶段随机规划中的风险规避后悔最小化","authors":"Mehran Poursoltani, E. Delage, A. Georghiou","doi":"10.1287/opre.2022.2429","DOIUrl":null,"url":null,"abstract":"Regret minimization has gained popularity in a wide range of decision-making problems under uncertainty because of its capacity to identify more opportunistic solutions than worst-case value optimization. Unfortunately, the rigidity of current worst-case regret models and scarcity of tractable solution methods have been serious obstacles in multistage applications. In “Risk-Averse Regret Minimization in Multistage Stochastic Programs,” M. Poursoltani, E. Delage, and A. Georghiou consider a multistage stochastic programming setting with a discrete scenario tree. They introduce the notion of the Δ-regret model, which bridges between the ex ante and ex post regret minimization paradigms that are currently used in the regret minimization literature for single-stage problems. The notion of Δ-regret minimization is investigated for the first time both theoretically and numerically in order to better understand its behavior under a set of popular risk measures.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"76 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Risk-Averse Regret Minimization in Multistage Stochastic Programs\",\"authors\":\"Mehran Poursoltani, E. Delage, A. Georghiou\",\"doi\":\"10.1287/opre.2022.2429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regret minimization has gained popularity in a wide range of decision-making problems under uncertainty because of its capacity to identify more opportunistic solutions than worst-case value optimization. Unfortunately, the rigidity of current worst-case regret models and scarcity of tractable solution methods have been serious obstacles in multistage applications. In “Risk-Averse Regret Minimization in Multistage Stochastic Programs,” M. Poursoltani, E. Delage, and A. Georghiou consider a multistage stochastic programming setting with a discrete scenario tree. They introduce the notion of the Δ-regret model, which bridges between the ex ante and ex post regret minimization paradigms that are currently used in the regret minimization literature for single-stage problems. The notion of Δ-regret minimization is investigated for the first time both theoretically and numerically in order to better understand its behavior under a set of popular risk measures.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2429\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2429","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

由于后悔最小化算法比最坏情况值优化算法更能识别机会主义的解决方案,因此在不确定条件下的决策问题中得到了广泛的应用。然而,目前最坏情况后悔模型的刚性和可处理的求解方法的缺乏已经成为多阶段应用的严重障碍。M. Poursoltani, E. Delage和a . Georghiou在“多阶段随机规划中的风险规避遗憾最小化”一文中考虑了具有离散情景树的多阶段随机规划设置。他们引入了Δ-regret模型的概念,该模型连接了目前在单阶段问题的后悔最小化文献中使用的事前和事后后悔最小化范式。本文首次从理论上和数值上研究了Δ-regret最小化的概念,以便更好地理解它在一组流行的风险度量下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk-Averse Regret Minimization in Multistage Stochastic Programs
Regret minimization has gained popularity in a wide range of decision-making problems under uncertainty because of its capacity to identify more opportunistic solutions than worst-case value optimization. Unfortunately, the rigidity of current worst-case regret models and scarcity of tractable solution methods have been serious obstacles in multistage applications. In “Risk-Averse Regret Minimization in Multistage Stochastic Programs,” M. Poursoltani, E. Delage, and A. Georghiou consider a multistage stochastic programming setting with a discrete scenario tree. They introduce the notion of the Δ-regret model, which bridges between the ex ante and ex post regret minimization paradigms that are currently used in the regret minimization literature for single-stage problems. The notion of Δ-regret minimization is investigated for the first time both theoretically and numerically in order to better understand its behavior under a set of popular risk measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信