用于3D对象匹配的不变描述符映射

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdallah El Chakik, Abdul Rahman El Sayed, H. Alabboud, Amer Bakkach
{"title":"用于3D对象匹配的不变描述符映射","authors":"Abdallah El Chakik, Abdul Rahman El Sayed, H. Alabboud, Amer Bakkach","doi":"10.14419/IJET.V9I1.29918","DOIUrl":null,"url":null,"abstract":"Meshes and point clouds are traditionally used to represent and match 3D shapes. The matching prob-lem can be formulated as finding the best one-to-one correspondence between featured regions of two shapes. This paper presents an efficient and robust 3D matching method using vertices descriptors de-tection to define feature regions and an optimization approach for regions matching. To do so, we compute an invariant shape descriptor map based on 3D surface patches calculated using Zernike coef-ficients. Then, we propose a multi-scale descriptor map to improve the measured descriptor map quali-ty and to deal with noise. In addition, we introduce a linear algorithm for feature regions segmentation according to the descriptor map. Finally, the matching problem is modelled as sub-graph isomorphism problem, which is a combinatorial optimization problem to match feature regions while preserving the geometric. Finally, we show the robustness and stability of our method through many experimental re-sults with respect to scaling, noise, rotation, and translation.  ","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"64 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An invariant descriptor map for 3D objects matching\",\"authors\":\"Abdallah El Chakik, Abdul Rahman El Sayed, H. Alabboud, Amer Bakkach\",\"doi\":\"10.14419/IJET.V9I1.29918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meshes and point clouds are traditionally used to represent and match 3D shapes. The matching prob-lem can be formulated as finding the best one-to-one correspondence between featured regions of two shapes. This paper presents an efficient and robust 3D matching method using vertices descriptors de-tection to define feature regions and an optimization approach for regions matching. To do so, we compute an invariant shape descriptor map based on 3D surface patches calculated using Zernike coef-ficients. Then, we propose a multi-scale descriptor map to improve the measured descriptor map quali-ty and to deal with noise. In addition, we introduce a linear algorithm for feature regions segmentation according to the descriptor map. Finally, the matching problem is modelled as sub-graph isomorphism problem, which is a combinatorial optimization problem to match feature regions while preserving the geometric. Finally, we show the robustness and stability of our method through many experimental re-sults with respect to scaling, noise, rotation, and translation.  \",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/IJET.V9I1.29918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/IJET.V9I1.29918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

网格和点云传统上用于表示和匹配3D形状。匹配问题可以表述为寻找两个形状的特征区域之间的最佳一对一对应关系。本文提出了一种利用顶点描述子检测来定义特征区域的高效、鲁棒的三维匹配方法和区域匹配的优化方法。为此,我们基于使用Zernike系数计算的三维表面补丁计算一个不变的形状描述符映射。然后,我们提出了一种多尺度描述子映射,以提高测量描述子映射的质量并处理噪声。此外,我们还介绍了一种基于描述符映射的线性特征区域分割算法。最后,将匹配问题建模为子图同构问题,即在保持几何特征的前提下匹配特征区域的组合优化问题。最后,我们通过许多关于缩放、噪声、旋转和平移的实验结果证明了我们的方法的鲁棒性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An invariant descriptor map for 3D objects matching
Meshes and point clouds are traditionally used to represent and match 3D shapes. The matching prob-lem can be formulated as finding the best one-to-one correspondence between featured regions of two shapes. This paper presents an efficient and robust 3D matching method using vertices descriptors de-tection to define feature regions and an optimization approach for regions matching. To do so, we compute an invariant shape descriptor map based on 3D surface patches calculated using Zernike coef-ficients. Then, we propose a multi-scale descriptor map to improve the measured descriptor map quali-ty and to deal with noise. In addition, we introduce a linear algorithm for feature regions segmentation according to the descriptor map. Finally, the matching problem is modelled as sub-graph isomorphism problem, which is a combinatorial optimization problem to match feature regions while preserving the geometric. Finally, we show the robustness and stability of our method through many experimental re-sults with respect to scaling, noise, rotation, and translation.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信