{"title":"与朗贝兰相关的晶体网络","authors":"M. Medeleanu, Z. Khalaj, M. Diudea","doi":"10.22052/IJMC.2020.144902.1384","DOIUrl":null,"url":null,"abstract":"Rhombellanes are mathematical structures existing in various environments, in crystal or quasicrystal networks, or even in their homeomorphs, further possible becoming real molecules. Rhombellanes originate in the K2.3 complete bipartite graph, a tile found in the linear polymeric staffanes. In close analogy, a rod-like polymer derived from hexahydroxy-cyclohexane, HHCH, was imagined. Further, the idea of linear polymer synthesized from dehydro-adamantane, DHAda, was extended in the design of a three-dimensional crystal network, called here Ada-Ada, of which tile is a hyper-adamantane (an adamantane of which vertices are just adamantanes). It was suggested that Ada-Ada would be synthesized starting from the real molecule tetrabromo-adamantane, by dehydrogenation and polymerization. The crystal structures herein proposed were characterized by connectivity and ring sequences and also by the Omega polynomial.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhombellane-related crystal networks\",\"authors\":\"M. Medeleanu, Z. Khalaj, M. Diudea\",\"doi\":\"10.22052/IJMC.2020.144902.1384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhombellanes are mathematical structures existing in various environments, in crystal or quasicrystal networks, or even in their homeomorphs, further possible becoming real molecules. Rhombellanes originate in the K2.3 complete bipartite graph, a tile found in the linear polymeric staffanes. In close analogy, a rod-like polymer derived from hexahydroxy-cyclohexane, HHCH, was imagined. Further, the idea of linear polymer synthesized from dehydro-adamantane, DHAda, was extended in the design of a three-dimensional crystal network, called here Ada-Ada, of which tile is a hyper-adamantane (an adamantane of which vertices are just adamantanes). It was suggested that Ada-Ada would be synthesized starting from the real molecule tetrabromo-adamantane, by dehydrogenation and polymerization. The crystal structures herein proposed were characterized by connectivity and ring sequences and also by the Omega polynomial.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2020.144902.1384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.144902.1384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rhombellanes are mathematical structures existing in various environments, in crystal or quasicrystal networks, or even in their homeomorphs, further possible becoming real molecules. Rhombellanes originate in the K2.3 complete bipartite graph, a tile found in the linear polymeric staffanes. In close analogy, a rod-like polymer derived from hexahydroxy-cyclohexane, HHCH, was imagined. Further, the idea of linear polymer synthesized from dehydro-adamantane, DHAda, was extended in the design of a three-dimensional crystal network, called here Ada-Ada, of which tile is a hyper-adamantane (an adamantane of which vertices are just adamantanes). It was suggested that Ada-Ada would be synthesized starting from the real molecule tetrabromo-adamantane, by dehydrogenation and polymerization. The crystal structures herein proposed were characterized by connectivity and ring sequences and also by the Omega polynomial.