M. Fujiwara, H. Ishihara, Takako Nemoto, Nobu-Yuki Suzuki, K. Yokoyama
{"title":"扩展框架和逻辑原则的分离","authors":"M. Fujiwara, H. Ishihara, Takako Nemoto, Nobu-Yuki Suzuki, K. Yokoyama","doi":"10.1017/bsl.2023.29","DOIUrl":null,"url":null,"abstract":"Abstract We aim at developing a systematic method of separating omniscience principles by constructing Kripke models for intuitionistic predicate logic \n$\\mathbf {IQC}$\n and first-order arithmetic \n$\\mathbf {HA}$\n from a Kripke model for intuitionistic propositional logic \n$\\mathbf {IPC}$\n . To this end, we introduce the notion of an extended frame, and show that each IPC-Kripke model generates an extended frame. By using the extended frame generated by an IPC-Kripke model, we give a separation theorem of a schema from a set of schemata in \n$\\mathbf {IQC}$\n and a separation theorem of a sentence from a set of schemata in \n$\\mathbf {HA}$\n . We see several examples which give us separations among omniscience principles.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EXTENDED FRAMES AND SEPARATIONS OF LOGICAL PRINCIPLES\",\"authors\":\"M. Fujiwara, H. Ishihara, Takako Nemoto, Nobu-Yuki Suzuki, K. Yokoyama\",\"doi\":\"10.1017/bsl.2023.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We aim at developing a systematic method of separating omniscience principles by constructing Kripke models for intuitionistic predicate logic \\n$\\\\mathbf {IQC}$\\n and first-order arithmetic \\n$\\\\mathbf {HA}$\\n from a Kripke model for intuitionistic propositional logic \\n$\\\\mathbf {IPC}$\\n . To this end, we introduce the notion of an extended frame, and show that each IPC-Kripke model generates an extended frame. By using the extended frame generated by an IPC-Kripke model, we give a separation theorem of a schema from a set of schemata in \\n$\\\\mathbf {IQC}$\\n and a separation theorem of a sentence from a set of schemata in \\n$\\\\mathbf {HA}$\\n . We see several examples which give us separations among omniscience principles.\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2023.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2023.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXTENDED FRAMES AND SEPARATIONS OF LOGICAL PRINCIPLES
Abstract We aim at developing a systematic method of separating omniscience principles by constructing Kripke models for intuitionistic predicate logic
$\mathbf {IQC}$
and first-order arithmetic
$\mathbf {HA}$
from a Kripke model for intuitionistic propositional logic
$\mathbf {IPC}$
. To this end, we introduce the notion of an extended frame, and show that each IPC-Kripke model generates an extended frame. By using the extended frame generated by an IPC-Kripke model, we give a separation theorem of a schema from a set of schemata in
$\mathbf {IQC}$
and a separation theorem of a sentence from a set of schemata in
$\mathbf {HA}$
. We see several examples which give us separations among omniscience principles.