卫星链路隧道系统解结研究

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Girão, J. Nogueira, António Salgueiro
{"title":"卫星链路隧道系统解结研究","authors":"D. Girão, J. Nogueira, António Salgueiro","doi":"10.2140/agt.2022.22.307","DOIUrl":null,"url":null,"abstract":"We prove that the tunnel number of a satellite chain link with a number of components higher than or equal to twice the bridge number of the companion is as small as possible among links with the same number of components. We prove this result to be sharp for satellite chain links over a 2-bridge knot. We also observe that the links in the main result satisfy the genus versus rank conjecture.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"44 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On unknotting tunnel systems of satellite chain links\",\"authors\":\"D. Girão, J. Nogueira, António Salgueiro\",\"doi\":\"10.2140/agt.2022.22.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the tunnel number of a satellite chain link with a number of components higher than or equal to twice the bridge number of the companion is as small as possible among links with the same number of components. We prove this result to be sharp for satellite chain links over a 2-bridge knot. We also observe that the links in the main result satisfy the genus versus rank conjecture.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.307\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.307","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了组件数大于或等于同伴网桥数两倍的卫星链链路的隧道数在组件数相同的链路中尽可能小。我们证明了这一结果对于2桥结上的卫星链环是尖锐的。我们还观察到主结果中的链接满足格对秩猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On unknotting tunnel systems of satellite chain links
We prove that the tunnel number of a satellite chain link with a number of components higher than or equal to twice the bridge number of the companion is as small as possible among links with the same number of components. We prove this result to be sharp for satellite chain links over a 2-bridge knot. We also observe that the links in the main result satisfy the genus versus rank conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信