随机一次移除g个手柄

G. Borradaile, James R. Lee, Anastasios Sidiropoulos
{"title":"随机一次移除g个手柄","authors":"G. Borradaile, James R. Lee, Anastasios Sidiropoulos","doi":"10.1145/1542362.1542425","DOIUrl":null,"url":null,"abstract":"It was shown in [Indyk-Sidiropoulos 07] that any orientable graph of genus g can be probabilistically embedded into a graph of genus g-1 with constant distortion. Removing handles one by one gives an embedding into a distribution over planar graphs with distortion 2O(g). By removing all $g$ handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of [Erickson-HarPeled 04] has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma from [Lee-Sidiropoulos 08].","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"15 1","pages":"655-662"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Randomly removing g handles at once\",\"authors\":\"G. Borradaile, James R. Lee, Anastasios Sidiropoulos\",\"doi\":\"10.1145/1542362.1542425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was shown in [Indyk-Sidiropoulos 07] that any orientable graph of genus g can be probabilistically embedded into a graph of genus g-1 with constant distortion. Removing handles one by one gives an embedding into a distribution over planar graphs with distortion 2O(g). By removing all $g$ handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of [Erickson-HarPeled 04] has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma from [Lee-Sidiropoulos 08].\",\"PeriodicalId\":11245,\"journal\":{\"name\":\"Discret. Comput. Geom.\",\"volume\":\"15 1\",\"pages\":\"655-662\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Comput. Geom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1542362.1542425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1542362.1542425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在[Indyk-Sidiropoulos 07]中表明,任何g属的可定向图都可以概率嵌入到具有恒定畸变的g-1属图中。一个接一个地去掉手柄,就得到了一个嵌入到失真为2O(g)的平面图形上的分布中。通过一次删除所有$g$句柄,我们给出了一个具有O(g2)失真的可定向图和不可定向图的概率嵌入。我们的结果是通过证明[Erickson-HarPeled 04]的最小割图具有低膨胀,然后使用[Lee-Sidiropoulos 08]的剥落引理将该图随机地从表面切割出来而得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomly removing g handles at once
It was shown in [Indyk-Sidiropoulos 07] that any orientable graph of genus g can be probabilistically embedded into a graph of genus g-1 with constant distortion. Removing handles one by one gives an embedding into a distribution over planar graphs with distortion 2O(g). By removing all $g$ handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of [Erickson-HarPeled 04] has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma from [Lee-Sidiropoulos 08].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信