G. Borradaile, James R. Lee, Anastasios Sidiropoulos
{"title":"随机一次移除g个手柄","authors":"G. Borradaile, James R. Lee, Anastasios Sidiropoulos","doi":"10.1145/1542362.1542425","DOIUrl":null,"url":null,"abstract":"It was shown in [Indyk-Sidiropoulos 07] that any orientable graph of genus g can be probabilistically embedded into a graph of genus g-1 with constant distortion. Removing handles one by one gives an embedding into a distribution over planar graphs with distortion 2O(g). By removing all $g$ handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of [Erickson-HarPeled 04] has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma from [Lee-Sidiropoulos 08].","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"15 1","pages":"655-662"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Randomly removing g handles at once\",\"authors\":\"G. Borradaile, James R. Lee, Anastasios Sidiropoulos\",\"doi\":\"10.1145/1542362.1542425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was shown in [Indyk-Sidiropoulos 07] that any orientable graph of genus g can be probabilistically embedded into a graph of genus g-1 with constant distortion. Removing handles one by one gives an embedding into a distribution over planar graphs with distortion 2O(g). By removing all $g$ handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of [Erickson-HarPeled 04] has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma from [Lee-Sidiropoulos 08].\",\"PeriodicalId\":11245,\"journal\":{\"name\":\"Discret. Comput. Geom.\",\"volume\":\"15 1\",\"pages\":\"655-662\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Comput. Geom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1542362.1542425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1542362.1542425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It was shown in [Indyk-Sidiropoulos 07] that any orientable graph of genus g can be probabilistically embedded into a graph of genus g-1 with constant distortion. Removing handles one by one gives an embedding into a distribution over planar graphs with distortion 2O(g). By removing all $g$ handles at once, we present a probabilistic embedding with distortion O(g2) for both orientable and non-orientable graphs. Our result is obtained by showing that the minimum-cut graph of [Erickson-HarPeled 04] has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma from [Lee-Sidiropoulos 08].