低强度混凝土配筋修复试验方案

Q3 Engineering
N. Hashemi, A. V. Oskouei, A. Doostmohamadi
{"title":"低强度混凝土配筋修复试验方案","authors":"N. Hashemi, A. V. Oskouei, A. Doostmohamadi","doi":"10.22075/JRCE.2021.20431.1417","DOIUrl":null,"url":null,"abstract":"Many concrete structures need rehabilitation during their service life for different reasons; poor quality of construction, relatively lower compressive strength of concrete, non-compliance with existing or updated design codes, and buildings that experienced an intensive earthquake are to name but a few. One of the solutions to strengthen concrete structures is to install rebar inside the structural components. In this paper, the effect of steel rebar planting with a constant nominal diameter of 8 mm along with two different lengths (i.e., 35 and 55 mm) as well as two different planting angles (i.e., 0 and 45 degrees) have considered as variables. Therefore, the rebar planting process has conducted on 12 low-strength cylindrical concrete specimens with an initial compressive strength of 15.5 MPa. The concrete column specimens were tested under uniaxial compressive load after rebar planting. The results of this study indicated that rebar planting leads to an increase in the initial compressive strength of the concrete specimens in general. The specimens with 35 mm and 55 mm planted length witnessed an average enhancement of 17% and 23%, respectively. Moreover, considering the angle of planted rebar as another variable parameter, the obtained results revealed that the maximum compressive load for both 35 mm and 55 mm specimens with a planting angle of 0-degree and 45-degree almost followed the same increase and improved by an average of 5%.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rehabilitation Experimental Program on Low-Strength Concrete with Steel Bar Planting\",\"authors\":\"N. Hashemi, A. V. Oskouei, A. Doostmohamadi\",\"doi\":\"10.22075/JRCE.2021.20431.1417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many concrete structures need rehabilitation during their service life for different reasons; poor quality of construction, relatively lower compressive strength of concrete, non-compliance with existing or updated design codes, and buildings that experienced an intensive earthquake are to name but a few. One of the solutions to strengthen concrete structures is to install rebar inside the structural components. In this paper, the effect of steel rebar planting with a constant nominal diameter of 8 mm along with two different lengths (i.e., 35 and 55 mm) as well as two different planting angles (i.e., 0 and 45 degrees) have considered as variables. Therefore, the rebar planting process has conducted on 12 low-strength cylindrical concrete specimens with an initial compressive strength of 15.5 MPa. The concrete column specimens were tested under uniaxial compressive load after rebar planting. The results of this study indicated that rebar planting leads to an increase in the initial compressive strength of the concrete specimens in general. The specimens with 35 mm and 55 mm planted length witnessed an average enhancement of 17% and 23%, respectively. Moreover, considering the angle of planted rebar as another variable parameter, the obtained results revealed that the maximum compressive load for both 35 mm and 55 mm specimens with a planting angle of 0-degree and 45-degree almost followed the same increase and improved by an average of 5%.\",\"PeriodicalId\":52415,\"journal\":{\"name\":\"Journal of Rehabilitation in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/JRCE.2021.20431.1417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2021.20431.1417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由于各种原因,许多混凝土结构在使用寿命期间需要进行修复;建筑质量差,混凝土抗压强度相对较低,不符合现有或更新的设计规范,以及经历过强烈地震的建筑物等等。加固混凝土结构的解决方案之一是在结构构件内部安装钢筋。本文将固定公称直径为8mm的钢筋沿两种不同长度(即35和55 mm)以及两种不同种植角度(即0和45度)种植的效果作为变量考虑。因此,对12个初始抗压强度为15.5 MPa的低强度圆柱形混凝土试件进行配筋处理。对浇筑钢筋后的混凝土柱试件进行了单轴抗压试验。研究结果表明,配筋总体上提高了混凝土试件的初始抗压强度。种植长度为35 mm和55 mm的标本,平均分别增加了17%和23%。此外,考虑插筋角度作为另一个可变参数,结果表明,在插筋角度为0°和45°时,35 mm和55 mm试件的最大抗压荷载几乎相同,平均提高5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Rehabilitation Experimental Program on Low-Strength Concrete with Steel Bar Planting
Many concrete structures need rehabilitation during their service life for different reasons; poor quality of construction, relatively lower compressive strength of concrete, non-compliance with existing or updated design codes, and buildings that experienced an intensive earthquake are to name but a few. One of the solutions to strengthen concrete structures is to install rebar inside the structural components. In this paper, the effect of steel rebar planting with a constant nominal diameter of 8 mm along with two different lengths (i.e., 35 and 55 mm) as well as two different planting angles (i.e., 0 and 45 degrees) have considered as variables. Therefore, the rebar planting process has conducted on 12 low-strength cylindrical concrete specimens with an initial compressive strength of 15.5 MPa. The concrete column specimens were tested under uniaxial compressive load after rebar planting. The results of this study indicated that rebar planting leads to an increase in the initial compressive strength of the concrete specimens in general. The specimens with 35 mm and 55 mm planted length witnessed an average enhancement of 17% and 23%, respectively. Moreover, considering the angle of planted rebar as another variable parameter, the obtained results revealed that the maximum compressive load for both 35 mm and 55 mm specimens with a planting angle of 0-degree and 45-degree almost followed the same increase and improved by an average of 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信